Skip to main content
Log in

Optimization of date syrup as a novel medium for lovastatin production by Aspergillus terreus ATCC 20542 and analyzing assimilation kinetic of carbohydrates

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lovastatin is a statin drug, which lowers cholesterol level in blood due to inhibition of (S)-3-hydroxy-3-methylglutaryl-CoA reductase. Date syrup is a rich medium for microbial growth and metabolite production. The main carbohydrates present in the date syrup are glucose and fructose. In this study, date syrup was used as a complex and bioresource medium for lovastatin production by Aspergillus terreus in the submerged cultivation. Optimization of the date syrup medium in order to achieve the highest titers of lovastatin and biomass was carried out. Four factors were studied by response surface methodology including concentration of date syrup carbohydrates, yeast extract concentration, pH, and rotation speed of the shaker. Optimal conditions for these factors found were as follows: concentration of date syrup carbohydrates, 64 g/l; yeast extract concentration, 15 g/l; pH, 6.5; and agitation speed, 150 rpm. It gave lovastatin concentration of 105.6 mg/l. Next, batch cultures in the optimal conditions were performed in a 2.5-l working volume bioreactor and led to the lovastatin titer of 241.1 mg/l during 12 days. Aspergillus terreus showed diauxic growth in the optimized medium with a shift from glucose to fructose assimilation during the run. Glucose and fructose assimilation kinetic parameters revealed that more lovastatin is produced during glucose assimilation, while more biomass was formed during fructose assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acourene S, Ammouche A (2012) Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. J Ind Microbiol Biotechnol 39:759–766

    Article  PubMed  CAS  Google Scholar 

  • Al-Taweil HI, Ekhlass M, Noura K (2015) Use of date syrup as alternative carbon source for microbial cultivation. World J Microbiol 2:022–025

    Google Scholar 

  • Anuradha K, Padma PN, Venkateshwar S, Reddy G (2014) Effect of physical factors on pellet morphology of Aspergillus awamori MTCC 9166 and polygalacturonase production. Biocatal Agric Biotechnol 3:271–274

    Google Scholar 

  • Assirey EAR (2015) Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J Taibah Univ Sci 9:75–79. https://doi.org/10.1016/j.jtusci.2014.07.002

    Article  Google Scholar 

  • Atlı B, Yamaç M, Yıldız Z, Isikhuemhen OS (2016) Statistical optimization of lovastatin production by Omphalotus olearius (DC.) singer in submerged fermentation. Prep Biochem Biotechnol 46:254–260

    Article  PubMed  CAS  Google Scholar 

  • Bizukojc M, Gonciarz J (2015) Influence of oxygen on lovastatin biosynthesis by Aspergillus terreus ATCC 20542 quantitatively studied on the level of individual pellets. Bioprocess Biosyst Eng 38:1251–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2008) Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactor. Biochem Eng J 42:198–207

    Article  CAS  Google Scholar 

  • Bizukojc M, Pawlowska B, Ledakowicz S (2007) Supplementation of the cultivation media with B-group vitamins enhances lovastatin biosynthesis by Aspergillus terreus. J Biotechnol 127:258–268

    Article  PubMed  CAS  Google Scholar 

  • Bizukojc M, Pawlak M, Boruta T, Gonciarz J (2012) Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol 162:253–261

    Article  PubMed  CAS  Google Scholar 

  • Boruta T, Bizukojc M (2017) Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World J Microbiol Biotechnol 33:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casas Lopez J, Sanchez Perez J, Fernandez Sevilla J, Acien Fernandez F, Molina Grima E, Chisti Y (2004) Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. J Chem Technol Biotechnol 79:1119–1126

    Article  CAS  Google Scholar 

  • Chang Y-N, Huang J-C, Lee C-C, Shih L, Tzeng Y-M (2002) Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzym Microb Technol 30:889–894

    Article  CAS  Google Scholar 

  • Dikshit R, Tallapragada P (2016) Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus. J Food Drug Anal 24:433–440

    Article  PubMed  CAS  Google Scholar 

  • Elsanhoty RM, Al-Turki I, Ramadan MF (2012) Screening of medium components by Plackett–Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind Crop Prod 36:313–320

    Article  CAS  Google Scholar 

  • Gao Q, Liu J, Liu L (2014) Relationship between morphology and itaconic acid production by Aspergillus terreus. J Microbiol Biotechnol 24:168–176

    Article  PubMed  CAS  Google Scholar 

  • Gbewonyo K, Hunt G, Buckland B (1992) Interactions of cell morphology and transport processes in the lovastatin fermentation. Bioprocess Eng 8:1–7

    Article  CAS  Google Scholar 

  • Goswami S, Vidyarthi A, Bhunia B, Mandal T (2012) A review on lovastatin and its production. J Biochem Technol 4:581–587

    CAS  Google Scholar 

  • Hajjaj H, Niederberger P, Duboc P (2001) Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl Environ Microbiol 67:2596–2602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaberi Ansari F, Jafari Mansoorian H, Jalili H, Azizi M (2016) A review of the effective factors for lovastatin production by Aspergillus terreus Atcc 20542 in liquid submerged fermentation journal of Babol University of Medical. Sciences 18:40–48. https://doi.org/10.22088/jbums.18.12.40

    Article  Google Scholar 

  • Jaberi Ansari F, Jalili H, Azizi M (2017) A study of the factors effective in morphogenesis of Aspergillus terreus in order to increase the production of lovastatin journal of Babol University of Medical. Sciences 19:54–61. https://doi.org/10.22088/jbums.19.9.54

    Article  Google Scholar 

  • Jamshidian H, Shojaosadati SA, Vilaplana F, Mousavi SM, Soudi MR (2016) Characterization and optimization of schizophyllan production from date syrup. Int J Biol Macromol 92:484–493

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Zhang X, Zhao Y, Cao X (2009a) Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically defined medium. World J Microbiol Biotechnol 25:1235–1241

    Article  CAS  Google Scholar 

  • Jia Z, Zhang X, Cao X (2009b) Effects of carbon sources on fungal morphology and lovastatin biosynthesis by submerged cultivation of Aspergillus terreus. Asia Pac J Chem Eng 4:672–677

    Article  CAS  Google Scholar 

  • Júnior MM, Batistote M, Ernandes JR (2008) Glucose and fructose fermentation by wine yeasts in media containing structurally complex nitrogen sources. J Inst Brew 114:199–204

    Article  Google Scholar 

  • Karizaki VM (2017) Iranian dates and ethnic date-based products. J Ethn Food 4:204–209. https://doi.org/10.1016/j.jef.2017.08.002

    Article  Google Scholar 

  • Karthika C, Sharmila G, Muthukumaran C, Manikandan K (2013) Utilization of whey powder as an alternate carbon source for production of hypocholesterolemic drug by Aspergillus terreus MTCC 1281. Food Sci Biotechnol 22:1–7

    Article  CAS  Google Scholar 

  • Kumar MS, Jana SK, Senthil V, Shashanka V, Kumar SV, Sadhukhan A (2000) Repeated fed-batch process for improving lovastatin production. Process Biochem 36:363–368

    Article  CAS  Google Scholar 

  • Lai L, Pan C, Tzeng B (2002) Medium optimization for lovastatin production by Aspergillus terreus in submerged cultures. J Chin Inst Chem Eng 33:517–527

    CAS  Google Scholar 

  • Lai L-ST, Hung C-S, Lo C-C (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104:9–13

    Article  PubMed  CAS  Google Scholar 

  • Lopez JC, Pérez JS, Sevilla JF, Fernández FA, Grima EM, Chisti Y (2003) Production of lovastatin by Aspergillus terreus: effects of the C: N ratio and the principal nutrients on growth and metabolite production. Enzym Microb Technol 33:270–277

    Article  CAS  Google Scholar 

  • Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474. https://doi.org/10.1016/j.biortech.2010.03.072

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Ping K, Wen L, Zhao W, Wang Z, Chu J, Zhuang Y (2015) Enhancing gluconic acid production by controlling the morphology of Aspergillus niger in submerged fermentation. Process Biochem 50:1342–1348

    Article  CAS  Google Scholar 

  • Mouafi FE, Ibrahim GS, Elsoud MMA (2016) Optimization of lovastatin production from Aspergillus fumigatus. J Genet Eng Biotechnol 14:253–259

    Article  Google Scholar 

  • Porcel ER, López JC, Pérez JS, Sevilla JF, Chisti Y (2005) Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochem Eng J 26:139–144

    Article  CAS  Google Scholar 

  • Porcel ER, López JC, Ferrón MV, Pérez JS, Sánchez JG, Chisti Y (2006) Effects of the sporulation conditions on the lovastatin production by Aspergillus terreus. Bioprocess Biosyst Eng 29:1–5

    Article  PubMed  CAS  Google Scholar 

  • Prosky L, Asp NG, Schweizer TF, DeVries JW, Furda I (1988) Determination of insoluble, soluble, and total dietary fiber in foods and food products: interlaboratory study. J Assoc Off Anal Chem 71:1017–1023

    PubMed  CAS  Google Scholar 

  • Rahim MHA, Harith HH, Montoya A, Abbas A (2017) Growth and lovastatin production by Aspergillus terreus under different carbohyrates as carbon sources. Biocatal Agric Biotechnol 10:379–385

    Google Scholar 

  • Rahman NA, Hasan M, Hussain M, Jahim J (2008) Determination of glucose and fructose from glucose isomerization process by high performance liquid chromatography with UV detection. Mod Appl Sci 2:p151

    Article  Google Scholar 

  • Rodriguez Porcel E, Casas Lopez J, Sanchez Perez J, Chisti Y (2007) Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding strategy. J Chem Technol Biotechnol 82:58–64

    Article  CAS  Google Scholar 

  • Roukas T, Kotzekidou P (1997) Pretreatment of date syrup to increase citric acid production. Enzym Microb Technol 21:273–276

    Article  CAS  Google Scholar 

  • Salman M, Alghamdi M, Bazaid S, Abdel-Hameed E (2011) Determination of fructose, glucose and sucrose in taif grape using high performance liquid chromatography and analysis of mineral salts. Arch Appl Sci Res 3:488–496

    CAS  Google Scholar 

  • Samiee SM, Moazami N, Haghighi S, Aziz Mohseni F, Mirdamadi S, Bakhtiari MR (2003) Screening of lovastatin production by filamentous fungi. Iran Biomed J 7:29–33

    CAS  Google Scholar 

  • Shindia A (2001) Some nutritional factors influencing mevinolin production byAspergillus terreus strain. Folia Microbiol 46:413–416

    Article  CAS  Google Scholar 

  • Songserm P, Karnchanatat A, Thitiprasert S, Tanasupawat S, Assabumrungrat S, Yang S-T, Thongchul N (2018) Metabolic responses of Aspergillus terreus under low dissolved oxygen and pH levels. Ann Microbiol 5(2):231–240

  • Sripalakit P, Riunkesorn J, Saraphanchotiwitthaya A (2011) Utilisation of vegetable oils in the production of lovastatin by Aspergillus terreus ATCC 20542 in submerged cultivation. Maejo Int J Sci Technol 5:231–240

    CAS  Google Scholar 

  • Su Y-C, Wang J-J, Lin T-T, Pan T-M (2003) Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46

    Article  PubMed  CAS  Google Scholar 

  • Suraiya S, Kim J-H, Tak JY, Siddique MP, Young CJ, Kim JK, Kong I-S (2018) Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT 92:1–9

  • Szakács G, Morovján G, Tengerdy RP (1998) Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol Lett 20:411–415

    Article  Google Scholar 

Download references

Acknowledgements

The authors would you like to thank Dr. Hosseini from Nano biotechnology division of university of Tehran for providing facilities in experiments analysis and also Roial technology group. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jalili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, F.J., Jalili, H., Bizukojc, M. et al. Optimization of date syrup as a novel medium for lovastatin production by Aspergillus terreus ATCC 20542 and analyzing assimilation kinetic of carbohydrates. Ann Microbiol 68, 351–363 (2018). https://doi.org/10.1007/s13213-018-1342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1342-2

Keywords

Navigation