Annals of Microbiology

, Volume 68, Issue 5, pp 261–271 | Cite as

Screening and identification of an Enterobacter ludwigii strain expressing an active β-xylosidase

  • Jiashi Zhang
  • Tangbing Cui
  • Xueqing Li
Original Article


Researchers have expressed increasing interest in the xylanolytic enzymes used in hemicellulose hydrolysis that convert wood and agricultural residues to second-generation biofuels. In our study, 32 isolates showed clear hydrolysis zones on agar plates containing xylan after Congo red staining. Among these isolates, strain LY-62 exhibited the highest β-xylosidase activity (1.29 ± 0.05 U/mL). According to the phylogenetic analysis of the 16S rDNA, strain LY-62 belongs to the Enterobacter genus. Using a combination of electron microscopy, Gram-staining, and conventional physiological and biochemical examinations, the strain LY-62 was identified as Enterobacter ludwigii. The β-xylosidase gene from Enterobacter ludwigii LY-62 was cloned, and the full-length protein was expressed in Escherichia coli as an N-terminal or C-terminal His-tagged fusions protein. Optimal β-xylosidase activity was achieved at pH 7.0 and 40 °C. The Michaelis constant KM values for His-Xyl62 and Xyl62-His were 1.55 and 2.8 mmol/L, respectively. The kcat values for His-Xyl62 and Xyl62-His were 8.51 and 6.94 s−1, respectively. The catalytic efficiencies of His-Xyl62 and Xyl62-His were 5.49 and 2.48 s−1 × mM−1, respectively. Thus, Xyl62 is a functional β-xylosidase, and our study represents the first report of a β-xylosidase from Enterobacter ludwigii.


Enterobacter ludwigii Expression GH43 β-xylosidase 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Ethics approval

Not applicable.


  1. Ammoneh H, Harba M, Akeed Y, Al-Halabi M, Bakri Y (2014) Isolation and identification of local Bacillus isolates for xylanase biosynthesis. Iran J Microbiol 6(2):127–132PubMedPubMedCentralGoogle Scholar
  2. Basaran P, Hanq YD, Basaran N, Worobo RW (2001) Cloning and heterologous expression of xylanase gene from Pichia stipitis in Escherichia coli. J Appl Microbiol 90(2):248–255CrossRefPubMedGoogle Scholar
  3. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338CrossRefPubMedGoogle Scholar
  4. Boone DR, Castenholz RW, Garrity GM, Bergey DH (2001) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Campos E, Negro MJ, Lorenzo GSD, Gonzalez S, Rorig M, Talia P, Grasso DH, Sáez F, Manzanares Secades P, Ballesteros Perdices M, Cataldi AA (2013) Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiol Res 169(2–3):213–220PubMedGoogle Scholar
  7. Changhao B, Xueli Z, Ingram LO, Preston JF (2009) Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates. Appl Environ Microbiol 75(18):5743–5749CrossRefGoogle Scholar
  8. Corrêa JM, Graciano L, Abrahão J, Loth EA, Gandra RF, Kadowaki MK, Henn C, Simão R (2012) Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl Biochem Biotechnol 168(8):2218–2229CrossRefPubMedGoogle Scholar
  9. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat H, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12Google Scholar
  10. Falck P, Linares-Pastén JA, Adlercreutz P, Karlsson EN (2015) Characterization of a family 43 β-xylosidase from the xylooligosaccharide utilizing putative probiotic Weissella sp. strain 92. Glycobiology 26(2):193–202CrossRefPubMedPubMedCentralGoogle Scholar
  11. Graciano L, Corrêa JM, Gandra RF, Seixas F, Kadowaki MK, Sampaio SC, Silva J, Osaku CA, Simão R (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World J Microbiol Biotechnol 28:2879–2888CrossRefPubMedGoogle Scholar
  12. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161CrossRefGoogle Scholar
  13. Hao S, Xun L, Huaxiang G, Yu Z, Yingjuan H, Liangliang W, Wang F (2013) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6:27CrossRefGoogle Scholar
  14. Hayashi S, Ohno T, Ito M, Yokoi H (2001) Purification and properties of the cell-associated β-xylosidase from Aureobasidium. J Ind Microbiol Biotechnol 26(5):276–279CrossRefPubMedGoogle Scholar
  15. Hoffmann H, Stindl S, Stumpf A, Mehlen A, Monget D, Heesemann J, Schleifer KH, Roggenkamp A (2005) Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Syst Appl Microbiol 28(3):206–212CrossRefPubMedGoogle Scholar
  16. Huy ND, Thayumanavan P, Kwon TH, Park SM (2013) Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium. J Biosci Bioeng 116(2):152–159CrossRefPubMedGoogle Scholar
  17. Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469CrossRefPubMedGoogle Scholar
  18. Jordan DB, Braker JD (2011) Opposing influences by subsite −1 and subsite +1 residues on relative xylopyranosidase/arabinofuranosidase activities of bifunctional β-D-xylosidase/α-L-arabinofuranosidase. Biochim Biophys Acta 1814:1648–1657CrossRefPubMedGoogle Scholar
  19. Jordan DB, Li XL, Dunlap CA, Whitehead TR, Cotta MA (2007) Structure-function relationships of a catalytically efficient beta-D-xylosidase. Appl Biochem Biotechnol 141(1):51–76CrossRefPubMedGoogle Scholar
  20. Jordan DB, Stoller JR, Lee CC, Chan VJ, Wagschal K (2017) Biochemical characterization of a GH43 β-xylosidase from Bacteroides ovatus. Appl Biochem Biotechnol 182:250–260Google Scholar
  21. Jordan DB, Wagschal K, Grigorescu A, Braker JD (2012) Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. App Microbiol Biotechnol 97:4415–4428CrossRefGoogle Scholar
  22. Khandeparkar R, Bhosle NB (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 157(4):315–325CrossRefPubMedGoogle Scholar
  23. Lachke AH (1988) 1,4-β-D-Xylan xylohydrolase of Sclerotium rolfsii. Methods Enzymol 160C(C):679–684CrossRefGoogle Scholar
  24. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G (2011) Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl Microbiol Biotechnol 92:1179–1185CrossRefPubMedGoogle Scholar
  25. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155(4):283–289CrossRefPubMedGoogle Scholar
  27. Liu F, Yang J, Xiao Y, Li L, Yang F, Jin Q (2016) Complete genome sequence of a clinical isolate of Enterobacter asburiae. Genome Announc 4(3):e00523-16CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495CrossRefGoogle Scholar
  29. Moraïs S, Alber OS, Barak Y, Hadar Y, Wilson DB, Lamed R, Shoham Y, Bayer EA (2012) Functional association of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 β-xylosidase. J Biol Chem 287(12):9213–9221CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41(9):1913–1923CrossRefGoogle Scholar
  31. Michlmayr H, Hell J, Lorenz C, Böhmdorfer S, Rosenau T, Kneifel W (2013) Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol 79(21):6747–6754CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nieto-Domínguez M, LId E, Barriuso J, Prieto A, BFd T, Canales-Mayordomo Á, Martínez MJ (2015) Novel pH-stable glycoside hydrolase family 3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Appl Environ Microbiol 81(18):6380–6392CrossRefPubMedPubMedCentralGoogle Scholar
  33. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591CrossRefPubMedGoogle Scholar
  34. Quinlan RJ, Teter S, Xu F (2010) Development of cellulases to improve enzymatic hydrolysis of lignocellulosic biomass. Bioalcohol Production 7:178–201Google Scholar
  35. Ratnadewi AAI, Fanani M, Kurniasih SD, Sakka M, Wasito EB, Sakka K, Nurachman Z, Puspaningsih NNT (2013) β-D-Xylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme. Appl Biochem Biotechnol 170:1950–1964CrossRefPubMedGoogle Scholar
  36. Rizzatti AC, Jorge JA, Terenzi HF, Rechia CG, Polizeli ML (2001) Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:156–160CrossRefPubMedGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  38. Sanyan Z, Huimin W, Pengjun S, Bo X, Yingguo B, Huiying L, Bin Y (2014) Cloning, expression, and characterization of a thermostable β-xylosidase from thermoacidophilic Alicyclobacillus sp. A4. Process Biochem 49:1422–1428CrossRefGoogle Scholar
  39. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44(1):387–397CrossRefPubMedGoogle Scholar
  40. Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 90(7):1171–1202CrossRefGoogle Scholar
  41. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234CrossRefPubMedGoogle Scholar
  42. Subramanian S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64CrossRefGoogle Scholar
  43. Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 38(9):1327–1340CrossRefGoogle Scholar
  44. Van Doorslaer E, Kersters-Hilderson H, De Bruyne CK (1985) Hydrolysis of β-D-xylo-oligosaccharides by β-D-xylosidase from Bacillus pumilus. Carbohydr Res 140:342–346CrossRefGoogle Scholar
  45. Viborg AH, Sørensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, Svensson B (2013) Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-D-xylosidase/α-L-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12. AMB Express 3(1):56CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DW (2009) Purification and characterization of a glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155(1–3):304–313PubMedGoogle Scholar
  47. Weilan S, Yemin X, Ailian W, Kataeva I, Jianjun P, Huawei W, Wiegel J (2011) Characterization of a novel β-Xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 77(3):719–726CrossRefGoogle Scholar
  48. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4 xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317PubMedPubMedCentralGoogle Scholar
  49. Xinzhou Y, Pengjun S, Huoqing H, Huiying L, Yaru W, Wei Z, Bin Y (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387CrossRefGoogle Scholar
  50. Xu WZ, Shima Y, Negoro S, Urabe I (1991) Sequence and properties of beta-xylosidase from Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence. Eur J Biochem 202(3):1197–1203CrossRefPubMedGoogle Scholar
  51. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410CrossRefPubMedGoogle Scholar
  52. Zanoelo FF, Polizeli Md Mde L, Terenzi HF, Jorge JA (2004) Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 31:170–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  1. 1.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations