Annals of Microbiology

, Volume 67, Issue 9, pp 615–621 | Cite as

Sakacin G is the main responsible bacteriocin for the anti-listerial activity of meat-borne Lactobacillus curvatus ACU-1

  • Mónica Adriana Mechoud
  • Ornella Estefanía Álvarez
  • María Elisa Cayré
  • Marcela Paola CastroEmail author
  • Carlos Minahk
  • Lucila Saavedra
Original Article


The present study was conducted to quantify the expression of the sakacins produced by Lactobacillus curvatus ACU-1, a strain isolated from artisanal dry fermented sausages of Argentina. Polymerase chain reaction (PCR) screening indicated the presence of sakacin G, P, and Q genes in L. curvatus ACU-1. Purification and activity assays determined that anti-Listeria activity was mainly associated to sakacin G, as mass spectrometry analysis revealed a single peak of 3832.60 Da. Further characterization by quantitative PCR demonstrated that L. curvatus ACU-1 transcription of the sakacin G structural gene was three orders of magnitude higher than the others. Interestingly, L. curvatus ACU-1 had skgA1/skgA2 as well as sppQ genes encoded in a plasmid, while the sppA gene that encodes for sakacin P was present in the bacterial chromosome. These results point out that sakacin G is the main peptide responsible for the anti-listerial activity of L. curvatus ACU-1, with little or no contribution of sakacin P and sakacin Q. The high level of expression of sakacin G demonstrated in the present work would facilitate its potential use in food preservation, improving the food quality, safety, and shelf life. In addition, the sakacin G promoter may serve as an interesting tool for the expression of other bacteriocins at higher levels.


Lactobacillus Bacteriocins Gene expression Listeria Artisanal dry sausages 



Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas (grants PIP 0183 and PIP 0406), Secretaría de Ciencia y Técnica de la Universidad Nacional de Tucumán (grant PIUNT 2014 D548/1), Secretaría de Ciencia y Técnica de la Universidad Nacional del Chaco Austral (grant PI N°21-2012), and Agencia Nacional de Promoción Científica y Tecnológica (grants PICT 2011 N°0175, PICT 2012 N°2998, and PICT 2012 N°1447). M.M. was the recipient of a CONICET postdoctoral fellowship. O.A. had a doctoral fellowship at UNCAus. M.C. is a researcher from UNCAus, while M.P.C., C.M., and L.S. are career investigators of CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alvarez-Sieiro P, Montalbán-López M, Mu D et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951. doi: 10.1007/s00253-016-7343-9 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552PubMedPubMedCentralGoogle Scholar
  3. Balciunas EM, Castillo Martinez FA, Todorov SD et al (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142. doi: 10.1016/j.foodcont.2012.11.025 CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Casaburi A, Di Martino V, Ferranti P et al (2016) Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 59:31–45CrossRefGoogle Scholar
  6. Castro MP, Palavecino NZ, Herman C et al (2011) Lactic acid bacteria isolated from artisanal dry sausages: characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Sci 87:321–329. doi: 10.1016/j.meatsci.2010.11.006 CrossRefPubMedGoogle Scholar
  7. Castro MP, Palavecino N, Herman C et al (2012) Influence of several gums on the growth and the production of a bacteriocin like substance from Lactobacillus curvatus/sakei ACU-1. Food Control 28:52–54. doi: 10.1016/j.foodcont.2012.04.041 CrossRefGoogle Scholar
  8. Cintas LM, Casaus P, Herranz C et al (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cocolin L, Rantsiou K (2007) Sequencing and expression analysis of sakacin genes in Lactobacillus curvatus strains. Appl Microbiol Biotechnol 76:1403–1411. doi: 10.1007/s00253-007-1120-8 CrossRefPubMedGoogle Scholar
  10. de Souza Barbosa M, Todorov SD, Ivanova I et al (2015) Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46:254–262. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  11. Dortu C, Huch M, Holzapfel WH et al (2008) Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett Appl Microbiol 47:581–586. doi: 10.1111/j.1472-765X.2008.02468.x CrossRefPubMedGoogle Scholar
  12. Eijsink VG, Skeie M, Middelhoven PH et al (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281PubMedPubMedCentralGoogle Scholar
  13. Fontana C, Cocconcelli PS, Vignolo G et al (2015) Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 47:53–59. doi: 10.1016/j.foodcont.2014.06.021 CrossRefGoogle Scholar
  14. Friedly EC, Crandall PG, Ricke S et al (2008) Identification of Listeria innocua surrogates for Listeria monocytogenes in hamburger patties. J Food Sci 73:M174–M178. doi: 10.1111/j.1750-3841.2008.00719.x CrossRefPubMedGoogle Scholar
  15. Gaspar P, Carvalho AL, Vinga S et al (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788CrossRefPubMedGoogle Scholar
  16. Guyonnet D, Fremaux C, Cenatiempo Y et al (2000) Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl Environ Microbiol 66:1744–1748CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jones E, Salin V, Williams GW (2005) Nisin and the market for commercial bacteriocins. Texas Agribusiness Market Research Center (TAMRC) Consumer and Product Research Report No. CP-01-05, 1, pp 1–20.
  18. Katla T, Naterstad K, Vancanneyt M et al (2003) Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin a, pediocin PA-1, and nisin. Appl Environ Microbiol 69:4431–4437CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55:181–186CrossRefPubMedGoogle Scholar
  20. Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57:1683–1688PubMedPubMedCentralGoogle Scholar
  21. Mathiesen G, Huehne K, Kroeckel L et al (2005) Characterization of a new bacteriocin operon in sakacin P-producing Lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol 71(7):3565–3574CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218CrossRefPubMedGoogle Scholar
  23. Raya R, Bardowski J, Andersen PS et al (1998) Multiple transcriptional control of the Lactococcus lactis trp operon. J Bacteriol 180:3174–3180PubMedPubMedCentralGoogle Scholar
  24. Remiger A, Ehrmann MA, Vogel RF (1996) Identification of bacteriocin-encoding genes in lactobacilli by polymerase chain reaction (PCR). Syst Appl Microbiol 19: 28–34Google Scholar
  25. Rivas FP, Castro MP, Vallejo M et al (2014) Sakacin Q produced by Lactobacillus curvatus ACU-1: functionality characterization and antilisterial activity on cooked meat surface. Meat Sci 97:475–479. doi: 10.1016/j.meatsci.2014.03.003 CrossRefPubMedGoogle Scholar
  26. Simon L, Fremaux C, Cenatiempo Y et al (2002) Sakacin G, a new type of antilisterial bacteriocin. Appl Environ Microbiol 68:6416–6420. doi: 10.1128/AEM.68.12.6416-6420.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Suárez N, Bonacina J, Hebert EM et al (2015) Genome mining and transcriptional analysis of bacteriocin genes in Enterococcus faecium CRL1879. J Data Mining Genomics Proteomics. doi: 10.4172/2153-0602.1000180 Google Scholar
  28. Tichaczek PS, Vogel RF, Hammes WP (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160(4):279–283CrossRefPubMedGoogle Scholar
  29. Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269CrossRefPubMedGoogle Scholar
  30. Xiraphi N, Georgalaki M, Van Driessche G et al (2006) Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie Van Leeuwenhoek 89(1):19–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and the University of Milan 2017

Authors and Affiliations

  1. 1.Instituto Superior de Investigaciones Biológicas, INSIBIO (CONICET-UNT) and Instituto de Química Biológica “Dr Bernabé Bloj”Facultad de Bioquímica, Química y Farmacia (UNT)TucumánArgentina
  2. 2.Laboratorio de Microbiología de los AlimentosUniversidad Nacional del Chaco AustralP.R. Sáenz PeñaArgentina
  3. 3.Laboratorio de Genética y Biología MolecularCentro de Referencia para Lactobacilos (CERELA-CONICET)TucumánArgentina

Personalised recommendations