Annals of Microbiology

, Volume 67, Issue 5, pp 359–369 | Cite as

RNAi induced silencing of pathogenicity genes of Fusarium spp. for vascular wilt management in tomato

  • Veerubommu ShanmugamEmail author
  • Vandana Sharma
  • Poonam Bharti
  • Poonam Jyoti
  • Sudesh Kumar Yadav
  • Rashmi Aggarwal
  • Shekhar Jain
Original Article


The necessity to develop new strategies for the control of Fusarium wilt of tomato signifies the identification of pathogencity genes and ascertaining their role to use them as molecular tools for fungicide development or to develop transgenics. Semi-quantitative gene expression studies have identified two pathogenicity genes, FOW2 and chsV, reported as ZnII)2Cys6-type transcription regulator and class V chitin synthase, respectively, as potential ones for being secreted all the time. The roles of these genes in the pathogenicity of Fusarium oxysporum and F. solani have been established by RNA interference (RNAi)-induced silencing (knockdown). The silencing vector encoding hairpin RNA of each of the gene fragment was constructed in a two-step PCR-based cloning, and introduced into the fungal genomic DNA. Silencing of either of the genes resulted in less virulent fungal phenotypes with altered physiological characteristics like sporulation and growth on solid media and a reduction in mRNA expression. The results therefore demonstrate the applicability of these pathogenicity genes as useful molecular targets for exploitation in Fusarium wilt control in tomato.


RNAi Silencing FOW2 chsV Fusarium solani Tomato 



The authors are grateful to the Director, CSIR-Institute of Himalayan Bioresource Technology, Palampur and Director, ICAR-Indian Agricultural Research Institute, for support and encouragement during the course of this investigation. This work was supported by Department of Biotechnology, Government of India and Indian Council of Agricultural Research through the Phytofura programme.


  1. Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127CrossRefPubMedGoogle Scholar
  2. Chandra S, Raizada M, Gaur AKS (1983) Pathological variability in Fusarium oxysporum and Fusarium solani. Indian Phytopathol 36:36–40Google Scholar
  3. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ha YS, Covert SF, Momany M (2006) FsFKS1, the 1,3-beta-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell 5:1036–1042CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hohn TM, Desjardins AE (1992) Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant-Microbe Interact 5:249–256CrossRefPubMedGoogle Scholar
  6. Hu Z, Parekh U, Maruta N, Trusov Y, Botella JR (2015) Down-regulation of Fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Front Chem 3:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  7. Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91:fiv098CrossRefPubMedGoogle Scholar
  8. Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753CrossRefPubMedGoogle Scholar
  9. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 110:19324–19329CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kong LA, Yang J, Li GT, Qi LL, Zhang YJ et al (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8(2):e1002526CrossRefPubMedPubMedCentralGoogle Scholar
  11. Liu H, Zhang B, Li C, Bao X (2010) Knock down of chitosanase expression in phytopathogenic fungus Fusarium solani and its effect on pathogenicity. Curr Genet 56:275–281CrossRefPubMedGoogle Scholar
  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  13. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287):367–373CrossRefPubMedPubMedCentralGoogle Scholar
  14. Madrid MP, Di Pietro A, Roncero MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47(1):257–266CrossRefPubMedGoogle Scholar
  15. McDonald T, Brown D, Keller NP, Hammond TM (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant-Microbe Interact 18:539CrossRefPubMedGoogle Scholar
  16. Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502CrossRefPubMedGoogle Scholar
  17. Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283CrossRefPubMedGoogle Scholar
  18. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, USAGoogle Scholar
  19. Pena-Castillo L, Hughes TR (2007) Why are there still over 1000 uncharacterized yeast genes. Genetics 176:7–14CrossRefPubMedPubMedCentralGoogle Scholar
  20. Schumann U, Ayliffe M, Kazan K, Wang MB (2010) RNA silencing in fungi. Front Biol 5(6):478–494CrossRefGoogle Scholar
  21. Schumann U, Smith NA, Kazan K, Ayliffe M, Wang MB (2013) Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum. Silence 4:3CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shanmugam V, Sharma V, Ananthapadmanaban (2008) Genetic relatedness of Trichoderma isolates antagonistic against Fusarium oxysporum f.sp. dianthi inflicting carnation wilt. Folia Microbiol 53(2):130–138Google Scholar
  23. Shanmugam V, Atri K, Gupta S, Kanoujia N, Naruka DS (2011) Selection and differentiation of Bacillus spp. antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting tomato. Folia Microbiol 56:170–177Google Scholar
  24. Shanmugam V, Chugh P, Sharma P (2015) Cold-tolerant Trichoderma species for the management of Fusarium wilt of tomato plants. Ann Microbiol 65:543–551CrossRefGoogle Scholar
  25. Sutherland R, Viljoen A, Myburg AA, Van den Berg N (2013) Pathogenicity associated genes in Fusarium oxysporum f. sp. cubense race 4. South Afr J Sci 109:01–10Google Scholar
  26. Zhong S, Leng Y, Bolton MD (2012) Construction of hairpin RNA-expressing vectors for RNA-mediated gene silencing in fungi. Methods Mol Biol 835:623–633CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2017

Authors and Affiliations

  • Veerubommu Shanmugam
    • 1
    Email author
  • Vandana Sharma
    • 2
  • Poonam Bharti
    • 3
    • 4
  • Poonam Jyoti
    • 3
  • Sudesh Kumar Yadav
    • 3
  • Rashmi Aggarwal
    • 1
  • Shekhar Jain
    • 1
  1. 1.Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Indian Institute of TechnologyRoorkeeIndia
  3. 3.Plant Metabolic Engineering Laboratory, Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  4. 4.Academy of Scientific and Innovative ResearchNew DelhiIndia

Personalised recommendations