Skip to main content

Treatment of urban wastewater with pure moving bed membrane bioreactor technology at different filling ratios, hydraulic retention times and temperatures

Abstract

Studies investigating the functioning and possible utility of new wastewater treatment technologies are urgently needed if the requirements of European Directive 91/271/EEC are to be met. Here, moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) technology was studied in a pilot plant of 445 L volume with ultrafiltration membrane (ZW-10) under 10 h and 24 h of hydraulic retention time (HRT) and three filling ratios (20 %, 35 % and 50 %) at temperatures between 2.5 °C and 17.3 °C. Biofilm density ranged between 1510 ± 127 and 3775 ± 247 mg/L carrier. Temperature was the operative variable with most influence in the behaviour of biomass and in organic matter and nitrogen oxidation whereas the filling ratio affected mainly biofilm density. Removal of organic matter and nitrogen increased with the amount of biofilm in the carrier. The amount of biofilm attached under the highest filling ratio was reduced as a consequence of increased collision between carriers, indicating that an optimum rate of filling ratio in this process can be determined. The organic matter removal rate reached 86.4 % and 91.5 % in terms of COD and BOD5, respectively, and no less than 13.9 % and 13.7 % ammonia and total nitrogen content, respectively, was removed by the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ahl RM, Leiknes T, Ødegaard H (2006) Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. Water Sci Technol 53(7):33–42. doi:10.2166/wst.2006.205

    CAS  Article  PubMed  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC

    Google Scholar 

  • Bassin JP, Kleerebezem R, Rosado AS, Van Loosdrecht M, Dezotti M (2012) Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ Sci Technol 46:1546–1555. doi:10.1021/es203356z

    CAS  Article  PubMed  Google Scholar 

  • Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84:254–259. doi:10.1016/j.chemosphere.2011.03.066

    CAS  Article  PubMed  Google Scholar 

  • Chave P (2001) The EU water framework directive. IWA, London

    Google Scholar 

  • Davis JA, Harrison K, Shields B (2009) Compact technology: increasing treatment capacity without building more basins. Fla Water Res J 2009:24–29

  • Germain E, Bancroft L, Dawson A, Hinrichs C, Fricker L, Pearce P (2007) Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations. Water Sci Technol 55(8–9):43–49. doi:10.2166/wst.2007.240

    CAS  Article  PubMed  Google Scholar 

  • Gjaltema A, Vinke JL, Van Loosdrecht MCM, Heijnen JJ (1997) Abrasion of suspended biofilm pellets in airlift reactors: Importance of shape, structure and particle concentrations. Biotechnol Bioeng 53(1):88–99. doi:10.1002/(SICI)1097-0290(19970105)53:1<88::AID-BIT12>3.0.CO;2-5

    CAS  Article  PubMed  Google Scholar 

  • Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52(10):1701–1710. doi:10.1016/S0045-6535(03)00355-2

    CAS  Article  PubMed  Google Scholar 

  • Kermani M, Bina B, Movahedian H, Amin MM, Nikaein M (2008) Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am J Environ Sci 4(6):675–682. doi:10.3844/ajessp.2008.675.682

    CAS  Article  Google Scholar 

  • Kim H, Gellner J, Boltz J, Freudenberg R, Gunsch C (2010) Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res 4:1553–1561. doi:10.1016/j.watres.2009.11.001

    Article  Google Scholar 

  • Krzeminski P, Iglesias-Obelleiro A, Madebo G, Garrido JM, Van Der Graaf JHJM, Van Lier JB (2012) Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. J Membr Sci 423–424:348–361. doi:10.1016/j.memsci.2012.08.032

    Article  Google Scholar 

  • Levstek M, Plazi Y (2009) Influence of carrier type on nitrification in the moving-bed-biofilm process. Water Sci Technol 59(5):875–882. doi:10.2166/wst.2009.037

    CAS  Article  PubMed  Google Scholar 

  • Leyva-Díaz JC, Martín-Pascual J, González-López J, Hontoria E, Poyatos JM (2013) Effects of scale-up on a hybrid moving bed biofilm reactor-membrane bioreactor for treating urban wastewater. Chem Eng Sci 104:808–816. doi:10.1016/j.ces.2013.10.004

    Article  Google Scholar 

  • Mamoukarris A, Mimis S, Karakolios E, Xipolitos K, Patsioura G (2014) New friendly to environment method in wastewater treatment. J Environ Prot Ecol 15(3):1021–1027

    Google Scholar 

  • Martín-Pascual J, López-López C, Cerdá A, González-López J, Hontoria E, Poyatos JM (2012) Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment. Water Air Soil Pollut 223(4):1699–1712. doi:10.1007/s11270-011-0976-5

    Article  Google Scholar 

  • Martín-Pascual J, Reboleiro-Rivas P, López-López C, Leyva-Díaz JC, Jóver M, Muñío MM, González-López J, Poyatos JM (2015) Effect of the filling ratio, MLSS, hydraulic retention time, and temperature on the behavior of the hybrid biomass in a hybrid moving bed membrane bioreactor plant to treat urban wastewater. J Environ Eng 141(7):1–10. doi:10.1061/(ASCE)EE.1943-7870.0000939

    Article  Google Scholar 

  • Mehrdadi N, Azimi AA, Nabi Bidhendi GR, Hooshyari B (2006) Determination of design criteria of an h-IFAS reactor in comparison with an extended aeration activated sludge process. Iran J Environ Health Sci Eng 3(1):53–64

    CAS  Google Scholar 

  • Mulkerrins D, Dobsona ADW, Colleranb E (2014) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30:249–259. doi:10.1016/S0160-4120(03)00177-6

    Article  Google Scholar 

  • Ødegaard H, Heijnen B, Westrum T (1994) A new moving bed biofilm reactor-applications and results. Water Sci Technol 29:157–165

    Google Scholar 

  • Pastorelli G, Canziani R, Pedrazzi L, Rozzi A (1999) Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Sci Technol 40(4–5):169–176. doi:10.1016/S0273-1223(99)00499-0

    CAS  Article  Google Scholar 

  • Peyton BM (1996) Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30(1):29–36. doi:10.1016/0043-1354(95)00110-7

    CAS  Article  Google Scholar 

  • Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32(2):61–68. doi:10.1016/j.bej.2006.07.009

    CAS  Article  Google Scholar 

  • Popa M, Vintan D, Roxana B, Popa D (2014) Study concerning the wastewater quality in the porcelain industry. J Environ Prot Ecol 15(1):53–60

    CAS  Google Scholar 

  • Rodriguez FA, Poyatos JM, Reboleiro-Rivas P, Osorio F, González-López J, Hontoria E (2011) Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane biorreactor using pure oxygen to supply the aerobic conditions. Bioresour Technol 102(10):6013–6018. doi:10.1016/j.biortech.2011.02.083

    CAS  Article  PubMed  Google Scholar 

  • Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng 34(3):322–331. doi:10.1016/j.aquaeng.2005.04.002

    Article  Google Scholar 

  • Trapani DD, Mannina G, Torregrossa M, Viviani G (2010) Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci Technol 61(7):1757–1766. doi:10.2166/wst.2010.970

    Article  PubMed  Google Scholar 

  • Tricolici O, Bumbac C, Postolache C (2014) Microalgae–bacteria system for biological wastewater treatment. J Environ Prot Ecol 15(1):268–276

    CAS  Google Scholar 

  • Van Der Roest HF, Van Bentem AGN, Lawrence DP (2002) MBR-technology in municipal wastewater treatment: challenging the traditional treatment technologies. Water Sci Technol 46(4–5):273–280

    PubMed  Google Scholar 

  • Vieira MJ, Melo LF (1999) Intrinsic kinetics of biofilms formed under turbulent flow and low substrate concentrations. Bioprocess Eng 20(4):369–375. doi:10.1007/s004490050605

    CAS  Article  Google Scholar 

  • Wang R, Wen X, Qian Y (2005) Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem 4:2992–3001. doi:10.1016/j.procbio.2005.02.024

    Article  Google Scholar 

  • Wang Z, Wu Z, Yu G, Liu J, Zhen Z (2006) Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors. J Membr Sci 284(1–2):87–94. doi:10.1016/j.memsci.2006.07.006

    CAS  Article  Google Scholar 

  • Wang LK, Yang CT (eds) (2014) Modern water resources engineering. Humana, New York

  • Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32(5):1564–1570. doi:10.1016/S0043-1354(97)00351-5

    CAS  Article  Google Scholar 

  • Yang S, Yang F, Fu Z, Lei R (2009) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling. Bioresour Technol 100(24):6655–6657. doi:10.1016/j.biortech.2009.07.009

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Spanish Ministry of Science and Technology (Ref. CTM2009-11929-C02-01). The authors would also like to express their most sincere thanks to the University of Granada for a personal grant to J. Martín-Pascual. The research team is also grateful to the Emasagra Water Treatment Plant for its participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Poyatos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín-Pascual, J., Leyva-Díaz, J.C. & Poyatos, J.M. Treatment of urban wastewater with pure moving bed membrane bioreactor technology at different filling ratios, hydraulic retention times and temperatures. Ann Microbiol 66, 607–613 (2016). https://doi.org/10.1007/s13213-015-1145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1145-7

Keyword

  • Moving bed
  • Membrane bioreactor
  • Filling ratio
  • Temperature