Ahl RM, Leiknes T, Ødegaard H (2006) Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. Water Sci Technol 53(7):33–42. doi:10.2166/wst.2006.205
CAS
Article
PubMed
Google Scholar
APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC
Google Scholar
Bassin JP, Kleerebezem R, Rosado AS, Van Loosdrecht M, Dezotti M (2012) Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ Sci Technol 46:1546–1555. doi:10.1021/es203356z
CAS
Article
PubMed
Google Scholar
Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84:254–259. doi:10.1016/j.chemosphere.2011.03.066
CAS
Article
PubMed
Google Scholar
Chave P (2001) The EU water framework directive. IWA, London
Google Scholar
Davis JA, Harrison K, Shields B (2009) Compact technology: increasing treatment capacity without building more basins. Fla Water Res J 2009:24–29
Germain E, Bancroft L, Dawson A, Hinrichs C, Fricker L, Pearce P (2007) Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations. Water Sci Technol 55(8–9):43–49. doi:10.2166/wst.2007.240
CAS
Article
PubMed
Google Scholar
Gjaltema A, Vinke JL, Van Loosdrecht MCM, Heijnen JJ (1997) Abrasion of suspended biofilm pellets in airlift reactors: Importance of shape, structure and particle concentrations. Biotechnol Bioeng 53(1):88–99. doi:10.1002/(SICI)1097-0290(19970105)53:1<88::AID-BIT12>3.0.CO;2-5
CAS
Article
PubMed
Google Scholar
Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52(10):1701–1710. doi:10.1016/S0045-6535(03)00355-2
CAS
Article
PubMed
Google Scholar
Kermani M, Bina B, Movahedian H, Amin MM, Nikaein M (2008) Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am J Environ Sci 4(6):675–682. doi:10.3844/ajessp.2008.675.682
CAS
Article
Google Scholar
Kim H, Gellner J, Boltz J, Freudenberg R, Gunsch C (2010) Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res 4:1553–1561. doi:10.1016/j.watres.2009.11.001
Article
Google Scholar
Krzeminski P, Iglesias-Obelleiro A, Madebo G, Garrido JM, Van Der Graaf JHJM, Van Lier JB (2012) Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. J Membr Sci 423–424:348–361. doi:10.1016/j.memsci.2012.08.032
Article
Google Scholar
Levstek M, Plazi Y (2009) Influence of carrier type on nitrification in the moving-bed-biofilm process. Water Sci Technol 59(5):875–882. doi:10.2166/wst.2009.037
CAS
Article
PubMed
Google Scholar
Leyva-Díaz JC, Martín-Pascual J, González-López J, Hontoria E, Poyatos JM (2013) Effects of scale-up on a hybrid moving bed biofilm reactor-membrane bioreactor for treating urban wastewater. Chem Eng Sci 104:808–816. doi:10.1016/j.ces.2013.10.004
Article
Google Scholar
Mamoukarris A, Mimis S, Karakolios E, Xipolitos K, Patsioura G (2014) New friendly to environment method in wastewater treatment. J Environ Prot Ecol 15(3):1021–1027
Google Scholar
Martín-Pascual J, López-López C, Cerdá A, González-López J, Hontoria E, Poyatos JM (2012) Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment. Water Air Soil Pollut 223(4):1699–1712. doi:10.1007/s11270-011-0976-5
Article
Google Scholar
Martín-Pascual J, Reboleiro-Rivas P, López-López C, Leyva-Díaz JC, Jóver M, Muñío MM, González-López J, Poyatos JM (2015) Effect of the filling ratio, MLSS, hydraulic retention time, and temperature on the behavior of the hybrid biomass in a hybrid moving bed membrane bioreactor plant to treat urban wastewater. J Environ Eng 141(7):1–10. doi:10.1061/(ASCE)EE.1943-7870.0000939
Article
Google Scholar
Mehrdadi N, Azimi AA, Nabi Bidhendi GR, Hooshyari B (2006) Determination of design criteria of an h-IFAS reactor in comparison with an extended aeration activated sludge process. Iran J Environ Health Sci Eng 3(1):53–64
CAS
Google Scholar
Mulkerrins D, Dobsona ADW, Colleranb E (2014) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30:249–259. doi:10.1016/S0160-4120(03)00177-6
Article
Google Scholar
Ødegaard H, Heijnen B, Westrum T (1994) A new moving bed biofilm reactor-applications and results. Water Sci Technol 29:157–165
Google Scholar
Pastorelli G, Canziani R, Pedrazzi L, Rozzi A (1999) Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Sci Technol 40(4–5):169–176. doi:10.1016/S0273-1223(99)00499-0
CAS
Article
Google Scholar
Peyton BM (1996) Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30(1):29–36. doi:10.1016/0043-1354(95)00110-7
CAS
Article
Google Scholar
Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32(2):61–68. doi:10.1016/j.bej.2006.07.009
CAS
Article
Google Scholar
Popa M, Vintan D, Roxana B, Popa D (2014) Study concerning the wastewater quality in the porcelain industry. J Environ Prot Ecol 15(1):53–60
CAS
Google Scholar
Rodriguez FA, Poyatos JM, Reboleiro-Rivas P, Osorio F, González-López J, Hontoria E (2011) Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane biorreactor using pure oxygen to supply the aerobic conditions. Bioresour Technol 102(10):6013–6018. doi:10.1016/j.biortech.2011.02.083
CAS
Article
PubMed
Google Scholar
Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng 34(3):322–331. doi:10.1016/j.aquaeng.2005.04.002
Article
Google Scholar
Trapani DD, Mannina G, Torregrossa M, Viviani G (2010) Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci Technol 61(7):1757–1766. doi:10.2166/wst.2010.970
Article
PubMed
Google Scholar
Tricolici O, Bumbac C, Postolache C (2014) Microalgae–bacteria system for biological wastewater treatment. J Environ Prot Ecol 15(1):268–276
CAS
Google Scholar
Van Der Roest HF, Van Bentem AGN, Lawrence DP (2002) MBR-technology in municipal wastewater treatment: challenging the traditional treatment technologies. Water Sci Technol 46(4–5):273–280
PubMed
Google Scholar
Vieira MJ, Melo LF (1999) Intrinsic kinetics of biofilms formed under turbulent flow and low substrate concentrations. Bioprocess Eng 20(4):369–375. doi:10.1007/s004490050605
CAS
Article
Google Scholar
Wang R, Wen X, Qian Y (2005) Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem 4:2992–3001. doi:10.1016/j.procbio.2005.02.024
Article
Google Scholar
Wang Z, Wu Z, Yu G, Liu J, Zhen Z (2006) Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors. J Membr Sci 284(1–2):87–94. doi:10.1016/j.memsci.2006.07.006
CAS
Article
Google Scholar
Wang LK, Yang CT (eds) (2014) Modern water resources engineering. Humana, New York
Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32(5):1564–1570. doi:10.1016/S0043-1354(97)00351-5
CAS
Article
Google Scholar
Yang S, Yang F, Fu Z, Lei R (2009) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling. Bioresour Technol 100(24):6655–6657. doi:10.1016/j.biortech.2009.07.009
CAS
Article
PubMed
Google Scholar