Skip to main content
Log in

Microbial communities and primary succession in high altitude mountain environments

Annals of Microbiology Aims and scope Submit manuscript

Abstract

In high mountain environments, microbial communities are key players of soil formation and pioneer plant colonization and growth. In the last 10 years, many researches have been carried out to highlight their contribution. Bacteria, fungi, archaea, and algae are normal inhabitants of the most common habitats of high altitude mountains, such as glacier surfaces, rock wall surfaces, boulders, glacier waters, streams, and mineral soils. Here, microbial communities are the first colonizers, acting as keystone players in elemental transformation, carbon and nitrogen fixation, and promoting the mineral soil fertility and pioneer plant growth. Especially in high mountain environments, these processes are fundamental to assessing pedogenetic processes in order to better understand the consequences of rapid glacier melting and climate change. This review highlights the most important researches on the field, with a particular view on mountain environments, from glaciers to pioneer plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Arróniz-Crespo M, Pérez-Ortega S, De los Ríos A, Allan Green TG, Ochoa Hueso R, Casermeiro MA, de la Cruz MT, Pintado A, Palacios D, Rozzi R, Tysklind N, Sancho LG (2014) Bryophyte-Cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLOS One 9:e96081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bardgett R, Walker L (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559

    Article  CAS  Google Scholar 

  • Bardgett R, Mawdsley J, Edwards S, Hobbs P, Rodwell J, Davies W (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Bardgett RD, Richter A, Bol R, Garnett MH, Baumler R, Xu XL, Lopez-Capel E, Manning DAC, Hobbs PJ, Hartley IR, Wanek W (2007) Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol Lett 5:487–490

    Article  Google Scholar 

  • Barquin J, Scarsbrook M (2008) Management and conservation strategies for cold water springs. Aquat Conserv Mar Freshw Ecosys 18:580–591

    Article  Google Scholar 

  • Becklin KM, Hertweck KL, Jumpponen A (2012) Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb Ecol 63:682–693

    Article  PubMed  Google Scholar 

  • Bengtson P, Bengtsson G (2005) Bacterial immobilization and remineralization of N at different growth rates and N concentrations. FEMS Microbiol Ecol 54:13–19

    Article  PubMed  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blaine McCleskey R, Clor L, Lownstern J, Evans W, Nordstrom D, Heasler H, Huebner M (2012) Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon rivers, Yellowstone National Park. Appl Geochem 27:2370–2381

    Article  CAS  Google Scholar 

  • Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui L, Solheim B, Turicchia S, Marasco R, Hirnichs K, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high arctic desert. Environ Microbiol 12:293–303

    Article  PubMed  CAS  Google Scholar 

  • Bowers RM, McCubbin IA, Haller AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49

    Article  CAS  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Brankatschk R, Towe S, Kleineidam K, Schloter M, Zeyer J (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 6:1025–1037

    Article  CAS  Google Scholar 

  • Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497

    Article  PubMed  Google Scholar 

  • Brunner I, Plötze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 9:266–279

    Article  PubMed  CAS  Google Scholar 

  • Brunner I, Goren A, Schlumpf A (2014) Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources. Environ Res Lett 9:025002

    Article  CAS  Google Scholar 

  • Brusetti L, Glad T, Borin S, Myren P, Rizzi A, Johnsen PJ, Carter P, Daffonchio D, Nielsen KM (2008) Low prevalence of blaTEM genes in Arctic environments and agricultural soil and rhizosphere. Microb Ecol Health Dis 20:27–36

    Article  CAS  Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: Contrasting elevational patterns of bacteria and plant diversity. Proc Natl Acad Sci U S A 105:11453–11457

    Article  Google Scholar 

  • Budel B, Weber B, Kuhl M, Pfanz H, Sultemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps—sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Hydrobiologia 562:59–96

    Article  CAS  Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  PubMed  CAS  Google Scholar 

  • Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental-regulation of nitrogen-fixation in a high arctic lowland ecosystem. Can J Bot 69:2744–2755

    Article  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay Alaska. Ecol Monog 64:149–175

    Article  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Chuvochina MS, Marie D, Chevaillier S, Petit JR, Normand P, Alekhina IA, Bulat SA (2011) Community variability of bacteria in alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential. Microbes Environ 26:237–247

    Article  PubMed  Google Scholar 

  • Chuvochina MS, Alekhina IA, Normand P, Petit JR, Bulat SA (2012) Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes. Microbiology 80:125–131

    Article  CAS  Google Scholar 

  • Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014) Safe-sites effects on rhizosphere bacterial communities in a high-altitude alpine environment. BioMed Res Int ID:480170

  • Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014b) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springer Plus 3:391

    Article  PubMed Central  PubMed  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Davey MC, Clarke KJ (1991) The spatial distribution of microalgae on fellfield soils. Antarctic Sci 3:257–263

    Article  Google Scholar 

  • De Garcia V, Brizzio S, van Broock MR (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550

    Article  PubMed  CAS  Google Scholar 

  • De los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environ Microbiol 4:231–237

    Article  Google Scholar 

  • Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  • Delvasto P, Valverde A, Ballester A, Igual JM, Munoz JA, Gonzalez F, Blázquez ML, Garcia C (2006) Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol Biochem 38:2645–2654

    Article  CAS  Google Scholar 

  • Deslippe JR, Egger KN (2006) Molecular diversity of nifH genes from bacteria associated with High Arctic dwarf shrubs. Microb Ecol 51:516–525

    Article  PubMed  CAS  Google Scholar 

  • Dieser M, Nocker A, Priscu J, Foreman CM (2010) Viable microbes in ice: Application of molecular assays to McMurdo Dry Valley lake ice communities. Antarct Sci 22:470–476

    Article  Google Scholar 

  • Dorn RI (2007) Rock varnish. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. Blackwell, London, pp 246–297

    Chapter  Google Scholar 

  • Duarte CM, Dachs J, Llabres M, Alonso-Laita P, Gasol JM, Tovar-Sanchez A, Sañudo-Wilhelmy SA, Agustí S (2006) Aerosol inputs enhance new production in the subtropical northeast Atlantic. J Geophys Res-Biogeosc 111:1–8

    Article  CAS  Google Scholar 

  • Duc L, Neuenschwander S, Rehrauer H, Wagner U, Sobek J, Schlapbach R, Zeyer J (2009a) Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield. Environ Microbiol 11:2179–2189

    Article  PubMed  CAS  Google Scholar 

  • Duc L, Noll M, Meier BE, Burgmann H, Zeyer J (2009b) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190

    Article  PubMed  Google Scholar 

  • Edwards IP, Bürgmann H, Miniaci C, Zeyer J (2006) Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) Heywood and adjacent bare soil along an alpine chronosequence. Microb Ecol 52:679–692

    Article  PubMed  CAS  Google Scholar 

  • Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ, Irvine-Fynn TDL, Rassner SME, Sattler B (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 8:035003

    Article  Google Scholar 

  • Esposito A, Ciccazzo S, Borruso L, Zerbe S, Daffonchio D, Brusetti L (2013) A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments. Curr Microbiol 67:472–479

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Ahmed E, Ciccazzo S, Sikorski J, Overmann J, Holmström SJM, Brusetti L (2015) Comparison of rock varnish bacterial communities with surrounding non-varnished rock surfaces: Taxon-specific analysis and morphological description. Microb Ecol. doi:10.1007/s00248-015-0617-4

    PubMed  Google Scholar 

  • Felip M, Camarero L, Catalan J (1999) Temporal changes of microbial assemblages in the ice and snow cover of a high mountain lake. Limnol Oceanogr 44:973–987

    Article  Google Scholar 

  • Franks F (1994) Protein destabilization at low temperatures. Adv Protein Chem 46:105–139

    Article  Google Scholar 

  • Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009) Soil CO2 flux and photoautotrophic community composition in high elevation, ‘barren’ soils. Environ Microbiol 11:674–686

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Rieder SR, Brunner I, Ploetze M, Koetzsch S, Lapanje A, Brandl H, Furrer G (2010) Weathering associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 76:4788–4796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frey B, Bühler L, Schmutz S, Zumsteg A, Furrer G (2013) Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ Res Lett 8:015033

    Article  CAS  Google Scholar 

  • Fritzsheridan RP (1988) Physiological ecology of nitrogen-fixing blue-green-algal crusts in the upper-subalpine life zone. J Phycol 24:302–309

    Google Scholar 

  • Fujii M, Takano Y, Kojima H, Hoshino T, Tanaka R, Fukui M (2010) Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microb Ecol 59:466–475

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ganzert L, Lipski A, Hubberten HW, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island South Shetland Archipelago Antarctica. FEMS Microbiol Ecol 76:476–491

    Article  PubMed  CAS  Google Scholar 

  • Garland JL, Cook KL, Adams JL, Kerkhof L (2001) Culturability as an indicator of succession in microbial communities. Microb Ecol 42:150–158

    PubMed  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface. Ann Rev Microbiol 63:431–450

    Article  CAS  Google Scholar 

  • Gordon DA, Priscu J, Giovannoni S (2000) Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb Ecol 39:197–202

    PubMed  Google Scholar 

  • Grime JP (2001) Plant strategies vegetation processes and ecosystem properties. Wiley Blackwell London Ed

  • Gruber S, Peter M, Hoelzle M, Woodhatch I, Haeberli W (2003) Surface temperatures in steep Alpine rock faces—A strategy for regional-scale measurement and modeling. Proc 8th Int Conf Permafrost 1:325–330

    Google Scholar 

  • Hågvar S, Ohlson M (2013) Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci Rep 3:2820

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hammerli A, Waldhuber S, Miniaci C, Zeyer J, Bunge M (2007) Local expansion and selection of soil bacteria in a glacier forefield. Eur J Soil Sci 58:1437–1445

    Article  CAS  Google Scholar 

  • Hayat R, Safdar Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73:95–109

    PubMed  CAS  Google Scholar 

  • Helmann JD (2014) Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. J Biol Chem 289:28112–28120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hervàs A, Casamayor EO (2009) High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area. FEMS Microbiol Ecol 67:219–228

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north-west Svalbard. J Ecol 91:651–663

    Article  Google Scholar 

  • Hofmann K, Reitschuler C, Illmer P (2013) Aerobic and anaerobic microbial activities in the foreland of a receding glacier. Soil Biol Biochem 57:418–426

    Article  CAS  Google Scholar 

  • Hood E, Williams MW, McKnight DM (2005) Sources of Dissolved Organic Matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255

    Article  CAS  Google Scholar 

  • Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM (2015) Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci 8:91–96

    Article  CAS  Google Scholar 

  • Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428

    Article  CAS  Google Scholar 

  • Judd KE, Byron CC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–2079

    Article  PubMed  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, U.S.A.) in relation to time since deglaciation. Mycorrhiza 12:43–49

    Article  PubMed  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek L, Zawierucha K, Smykla J, Michalczyk L (2012) Tardigrada of the Revdalen (Spitsbergen) with the descriptions of two new species: Bryodelphax parvuspolaris (Heterotardigrada) and Isohypsibius coulsoni (Eutardigrada). Polar Biol 35:1013–1026

    Article  Google Scholar 

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407

    Article  PubMed  Google Scholar 

  • Kaštovská K, Stibal M, Sabacka M, Cerna B, Santruckova H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287

    Article  Google Scholar 

  • Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94:492–496

    Article  PubMed  CAS  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Kennedy IR, Pereggerk LL, Wood C, Deaker R, Glichrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crop: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiontic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Knelman JE, Legg TM, O’Neill SP, Washenberger CL, Gonzalez A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    Article  CAS  Google Scholar 

  • Körner C (1999) Alpine plant life. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181

    Article  CAS  Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lapanje A, Wimmersberger C, Furrer G, Brunner I, Frey B (2012) Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma glacier (Central Alps) deglaciated granite sand. Microbial Ecol 6:865–882

    Article  CAS  Google Scholar 

  • Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure in glacier forefields on calcareous and siliceous bedrock. Eur J Soil Sci 60:860–870

    Article  CAS  Google Scholar 

  • Lee YM, Kim SY, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 49:355–362

    Article  PubMed  CAS  Google Scholar 

  • Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427

    Article  PubMed  CAS  Google Scholar 

  • Llorens-Marès T, Auguet JC, Casamayor EO (2012) Winter to spring changes in the slush bacterial community composition of a high-mountain lake (Lake Redon, Pyrenees). Environ Microbiol Rep 4:50–56

    Article  PubMed  Google Scholar 

  • Lutz S, Anesio AM, Jorge Villar SE, Benning LG (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 89:402–414

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Anesio AM, Edwards A, Benning LG (2015) Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 6:307

    PubMed Central  PubMed  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Article  CAS  Google Scholar 

  • Mapelli F, Marasco R, Rizzi A, Baldi F, Ventura S, Daffonchio D, Borin S (2011) Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines. Microb Ecol 61:438–447

    Article  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Marnocha CL, Dixon JC (2014) Bacterially facilitated rock-coating formation as a component of the geochemical budget in cold climates: An example from Kärkevagge, Swedish Lapland. Geomorphology 218:45–51

    Article  Google Scholar 

  • Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23:205–211

    Article  Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Mavris C, Egli M, Plotze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine Switzerland). Geoderma 155:359–371

    Article  CAS  Google Scholar 

  • McFadden LD, Eppes MC, Gillespie AR, Hallet B (2005) Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Geol Soc Am Bull 117:161–173

    Article  Google Scholar 

  • Meola M, Lazzaro A, Zeyer J (2014) Diversity, resistance and resilience of the bacterial communities at two alpine glacier forefields after a reciprocal soil transplantation. Environ Microbiol 16:1918–1934

    Article  PubMed  CAS  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383

    Article  CAS  Google Scholar 

  • Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen nov sp nov a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346 Microbiol Ecol 67:219–228

  • Miniaci C, Bunge M, Duc L, Edwards I, Bürgmann H, Zeyer J (2007) Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fertil Soil 44:289–297

    Article  Google Scholar 

  • Miteva VI, Brenchely JE (2005) Detection and Isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchely JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Müller T, Leya T, Fuhr G (2001) Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arct Antarct Alp Res 123:42–51

    Article  Google Scholar 

  • Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90

    Article  CAS  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated recently deglaciated soil. Microb Ecol 53:110–122

    Article  PubMed  Google Scholar 

  • Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347

    Article  PubMed  CAS  Google Scholar 

  • Nicol GW, Tscherko D, Chang L, Hammesfahr U, Prosser JI (2006) Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Environ Microbiol 8:1382–1393

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1963) Ecology. Holt Rinchart Winston Ed NY

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:GB2

    Article  CAS  Google Scholar 

  • Pallavi KP, Gupta PC (2013) A psychrotolerant strain Kluyvera intermedia solubilizes inorganic phosphate at different carbon and nitrogen source. Bioscan 8:1197–1201

    CAS  Google Scholar 

  • Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    Article  PubMed  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nature Microbiol Rev 11:789–799

    Article  CAS  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbière F, Jocteur Monrozier L (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Potter RM, Rossman GR (1977) Desert varnish: the importance of clay minerals. Science 196:1446–1448

    Article  PubMed  CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep antarctic ice. Proc Nat Acad Sci 97:1247–1251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  PubMed  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and prospecting. ASM Press, Washington, pp 130–145

    Chapter  Google Scholar 

  • Psenner R, Sattler B (1998) Life at the freezing point. Science 280:2073–2074

    Article  PubMed  CAS  Google Scholar 

  • Puri S, Hohle TH, O’Brian MR (2010) Control of bacterial iron homeostasis by manganese. Proc Nat Acad Sci 107:10691–10695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ragot S, Zeyer J, Zehnder L, Reusser E, Brandl H, Lazzaro A (2013) Bacterial community structures of an alpine apatite deposit. Geoderma 202–203:30–37

    Article  CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Article  CAS  Google Scholar 

  • Remias D, Wastian H, Lütz C, Leya T (2013) Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci 25:1–9

    Article  Google Scholar 

  • Rösch C, Bothe H (2005) Improved assessment of denitrifying N2-fixing and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roy J, Albert CH, Ibanez S, Saccone S, Zinger L, Choler P, Clément JC, Lavergne S, Geremia RA (2013) Microbes on the cliff: alpine cushion plants structure bacterial and fungal communities. Front Microbiol 4:64

    PubMed Central  PubMed  CAS  Google Scholar 

  • Russell NJ, Harrisson P, Johnston IA, Jaenicke R, Zuber M, Franks F, Wynn-Williams D (1990) Cold adaptation of microorganisms. Philos Trans R Soc London B 326:595–611

    Article  CAS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 8:591–596

    Google Scholar 

  • Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103

    Article  CAS  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 meters above sea level) recently deglaciated soils. Proc R Soc B 275:2793–2802

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc R Soc B 278:702–708

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt SK, Naff CS, Lynch RC (2012) Fungal communities at the edge: ecological lesson from high alpine fungi. Fungal Ecol 5:443–452

    Article  Google Scholar 

  • Schütte UM, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 2:1258–1268

    Article  Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains Japan analyzed by 16S rRNA gene sequencing and Real-Time PCR. Appl Environ Microbiol 71:123–130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5:127–134

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P (2014) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Ecol 118:61–71

    Article  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Sehar N, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold tolerant plant growth promoting bacterium Pantoea dispersa 1A, isolated from a sub alpine soil in the North Western Indian Himalaya. World J Microb Biot 24:955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Sehar N, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Sehar N, Mishra PK, Bisht JK, Gupta HS (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Sehar N, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microb Biot 25:131–136

    Article  Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    Article  CAS  Google Scholar 

  • Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  PubMed  CAS  Google Scholar 

  • Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 45:397–407

    Article  CAS  Google Scholar 

  • Sigler WV, Zeyer J (2004) Colony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunists. Microb Ecol 48:316–323

    Article  PubMed  CAS  Google Scholar 

  • Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure activity and opportunistic growth dynamics. Microb Ecol 44:306–316

    Article  PubMed  CAS  Google Scholar 

  • Simonet P, Navarro E, Rouvier C, Reddell P, Zimpfer J, Dommergues Y, Bardin R, Combarro P, Hamelin J, Domenach AM, Gourbiére F, Prin Y, Dawson JO, Normand P (1999) Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–533

    Article  PubMed  CAS  Google Scholar 

  • Singer GA, Fasching C, Wilhelm L, Niggeman J, Steier P, Dittmar T, Battin TJ (2012) Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat Geosci 5:710–714

    Article  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  PubMed  CAS  Google Scholar 

  • Solheim B, Wiggen H, Røberg S, Spaink HP (2004) Associations between arctic cyanobacteria and mosses. Symbiosis 37:169–187

    Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Rehak J (2008a) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 8:2172–2178

    Article  CAS  Google Scholar 

  • Stibal M, Tranter M, Telling J, Benning LG (2008b) Speciation phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90:1–13

    Article  CAS  Google Scholar 

  • Strauss SL, Garcia-Pichel F, Day TA (2012) Microbial colonization of a recently exposed glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35:1459–1471

    Article  Google Scholar 

  • Styriakova I, Mockovciakova A, Styriak I, Kraus I, Uhlik P, Madejova J, Orolinova Z (2012) Bioleaching of clays and iron oxide coatings from quartz sands. Appl Clay Sci 61:1–7

    Article  CAS  Google Scholar 

  • Takeuchi N (2013) Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ Res Lett 8:035002

    Article  Google Scholar 

  • Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res 114:D17102

    Article  CAS  Google Scholar 

  • Thomas WH, Duval B (1995) Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic Alp Res 27:389–399

    Article  Google Scholar 

  • Tieber A, Lettner H, Bossew P, Hubmer A, Sattler B, Hofmann W (2009) Accumulation of anthropogenic radionuclides in cryoconites on Alpine glaciers. J Environ Radioact 100:590–598

    Article  PubMed  CAS  Google Scholar 

  • Töwe S, Albert A, Kleineidam K, Brankatschk R, Dümig A, Welzl G, Munch JC, Zeyer J, Schloter M (2010) Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma Glacier forefield. Microb Ecol 60:762–770

    Article  PubMed  Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696

    Article  Google Scholar 

  • Tscherko D, Hammesfahr U, Marx MC, Kandeler E (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol Biochem 36:1685–1698

    Article  CAS  Google Scholar 

  • Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340

    Article  PubMed  CAS  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeila J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45

    Article  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb Ecol 69:135–145

    Article  PubMed  Google Scholar 

  • Welch SA, Ullman WJ (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees C. Geochim Cosmochim Acta 63:19–20

    Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Appl Environ Microbiol 65:374–380

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K (2013) Microbial biodiversity in glacier-fed streams. ISME J 7:1651–1660

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong FKY, Lacap DC, Lau MCY, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed Central  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007b) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura Y, Kohshima S, Takeuchi N, Seko K, Fujita K (2006) Snow algae in a Himalayan ice core: new environmental markers for ice-core analyses and their correlation with summer mass balance. Ann Glaciol 43:148–153

    Article  Google Scholar 

  • Zhang XF, Zhao L, Xu SJ Jr, Liu YZ, Liu HY, Cheng GD (2012) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J Appl Microbiol 114:1054–1065

    Article  CAS  Google Scholar 

  • Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high Artic, Svalbard. Arct Antarc Alp Res 34:293–299

    Article  Google Scholar 

  • Zumsteg A, Luster J, Göransson H, Smittenberg R, Brunner I, Bernasconi S, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564

    Article  PubMed  Google Scholar 

  • Zumsteg A, Schmutz S, Frey B (2013) Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing. Environ Microbiol Rep 5:424–437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was supported by the Free University of Bozen/Bolzano internal funds TN5026 “Effects of climate change on high-altitude ecosystems” (CUP n. I41J10000960005). Partial funds came from the Dr. Erich-Ritter and the Dr. Herzog-Sellenberg Foundation within the Stifterverband für die Deutsche Wissenschaft, project “EMERGE: Retreating glaciers and emerging ecosystems in the Southern Alps” (CUP n. I41J11000490007). The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brusetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccazzo, S., Esposito, A., Borruso, L. et al. Microbial communities and primary succession in high altitude mountain environments. Ann Microbiol 66, 43–60 (2016). https://doi.org/10.1007/s13213-015-1130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1130-1

Keywords

Navigation