Skip to main content

Advertisement

Log in

Isolation, detection and inactivation of a Myoviridae bacteriophage infecting Bacillus amyloliquefaciens FB11

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus amyloliquefaciens is commonly used as a starter culture for fermentation of soybeans and soybean meals. Like other starter cultures, B. amyloliquefaciens FB11 faces threats from phage infection. Frequent phage attacks during large-scale cell culture cause serious yield losses. To alleviate this problem, phage detection, identification and inactivation are required. The isolation and preliminary characterization of a phage designated BA01 revealed that it is a Myoviridae phage, with some regions of its genome sharing sequence similarity with the genome of Bacillus subtilis phage SPO1. BA01 showed strong lytic activity against B. amyloliquefaciens, B. circulans and B. pumilus. A PCR-based method was developed to detect BA01 in large-scale cell culture of B. amyloliquefaciens FB11, where a pair of degenerate primers could detect BA01 with a limit of detection of 104 PFU/mL. Inactivation of BA01 was achieved by either thermal treatment at 70 °C for 5 min or treatment with peracetic acid-based disinfectant (0.3 % v/v) for 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–c

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams MH (1959) Bacteriophage. Interscience, New York, pp 450–456

    Google Scholar 

  • Binetti AG, Reinheimer JA (2000) Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants. J Food Prot 63:509–515

  • Binetti AG, Del Río B, Cruz Martín M, Álvarez MA (2005) Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl Environ Microbiol 71:6096–6103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capra ML, Quiberoni A, Reinheimer JA (2004) Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol 38:499–504

    Article  CAS  PubMed  Google Scholar 

  • Dilek Avsaroglu M, Buzrul S, Alpas H, Akcelik M (2007) Hypochlorite inactivation kinetics of lactococcal bacteriophages. LWT Food Sci Technol 40:1369–1375

    Article  CAS  Google Scholar 

  • Ebrecht AC, Guglielmotti DM, Tremmel G, Jorge A, Reinheimer JA, Suárez VB (2010) Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance. Food Microbiol 27:515–520

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Hong JW, Yun NR, Lee YN (2011) Characterization of Bacillus phage-K2 isolated from chungkookjang, a fermented soybean foodstuff. J Ind Microbiol Biotechnol 38:39–42

    Article  CAS  PubMed  Google Scholar 

  • Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190:5753–5765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561

    Article  CAS  PubMed  Google Scholar 

  • Kubo Y, Rooney AP, Tsukakoshi Y, Nakagawa R, Hasegawa H, Kimura K (2011) Phylogenetic analysis of Bacillus subtilis strains applicable to Natto (fermented soybean) production. Appl Environ Microbiol 77:6463–6469

  • Meerak J, Lida H, Watanabe Y, Miyashita M, Sato H, Nakagawa Y, Tahara Y (2007) Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J Gen Appl Microbiol 53:315–323

    Article  CAS  PubMed  Google Scholar 

  • Mercanti DJ, Guglielmotti DM, Patrignani F, Reinheimer JA, Quiberoni A (2012) Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application. Food Microbiol 29:99–104

    Article  CAS  PubMed  Google Scholar 

  • Muyombwe A, Tanji Y, Unno H (1999) Cloning and expression of a gene encoding the lytic functions of Bacillus amyloliquefaciens phage: evidence of an auxiliary lysis system. J Biosci Bioeng 88:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nagai T (2012) Bacteriophages of Bacillus subtilis (natto) and their contamination in natto factories. In: Kurtboke I (ed) Bacteriophages. InTech, pp 95–110. doi:10.5772/33555. http://www.intechopen.com/books/bacteriophages/bacteriophages-of-bacillus-subtilis-natto-and-their-contamination-in-natto-factories. Accessed 13 August 2014

  • Nagai T, Yamasaki F (2009) Bacillus subtilis (natto) bacteriophages isolated in Japan. Food Sci Technol Res 15:293–298

    Article  CAS  Google Scholar 

  • Parker ML, Eiserling FA (1983) Bacteriophage SPOl structure and morphogenesis. I. Tail structure and length regulation. J Virol 46:239–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quiberoni A, Guglielmotti DM, Reinheimer JA (2003) Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int J Food Microbiol 84:51–62

    Article  CAS  PubMed  Google Scholar 

  • Seo MJ, Nam YD, Lee SY, Park SL, Yi SH, Lim SI (2013) Isolation of the putative biosynthetic gene cluster of 1-deoxynojirimycin by Bacillus amyloliquefaciens 140N, its production and application to the fermentation of soybean paste. Biosci Biotechnol Biochem 77:398–401

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suárez VB, Reinheimer JA (2002) Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J Food Protect 65:1756–1759

    Google Scholar 

  • Umene K, Oohashi S, Yamanaka F, Shiraishi A (2009) Molecular characterization of the genome of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production. World J Microbiol Biotechnol 25:1877–1881

    Article  CAS  Google Scholar 

  • Zahler SA, Korman RZ, Thomas C, Fink PS, Weiner MP, Odebralski JM (1987) H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H. J Gen Microbiol 133:2937–2944

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (grant number P-11-00852). We thank Dr. Samaporn Teeravachyan for proofreading the manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetsadaporn Pitaksutheepong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitaksutheepong, C., Abhisingha, M., Dumnin, J. et al. Isolation, detection and inactivation of a Myoviridae bacteriophage infecting Bacillus amyloliquefaciens FB11. Ann Microbiol 65, 1841–1846 (2015). https://doi.org/10.1007/s13213-014-1022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-1022-9

Keywords