Skip to main content
Log in

Physiological comparison of cells with high and low alcohol dehydrogenase activities in bacterial populations consuming ethanol

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Measuring the physiological heterogeneity of natural and industrial microbial populations is essential to studying, modelling and monitoring of microbial populations. It was discovered that populations of Escherichia coli and Bacillus megaterium growing in medium with ethanol as an external source of energy have two actively respiring but physiologically different subpopulations. Cells of one subpopulation have negligibly low alcohol dehydrogenase (ADH) activity (ADH-L cells) and cells of the other have high ADH activity (ADH-H cells). The subpopulation of ADH-H bacterial cells was measured using 10 min incubations of cells in a 1% solution of allyl alcohol for fast selective killing of cells with high activity of ADH and flow cytometry detection of dead cells after this incubation. The content of ADH-H cells during exponential phase of batch culture varied from 9 % to 90 % and lowered to zero for a few hours during starvation of the population. ADH-L cells are actively respiring cells and not depolarized cells. The simultaneous presence of ADH-L and ADH-H cells growing in the medium with ethanol can be explained by the fact that ADH-H cells oxidize actively external ethanol whereas ADH-L cells oxidize only intracellular storage carbohydrates. The method for enumeration of cells with high ADH activity can be used to monitor the heterogeneity of bacterial populations consuming ethanol as a sole source of carbon and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216

    Article  PubMed Central  PubMed  Google Scholar 

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balaban NQ, Gerdes K, Lewis K, McKinney JD (2013) A problem of persistence: still more questions than answers? Nat Rev Microbiol 11:587–591

    Article  CAS  PubMed  Google Scholar 

  • Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination flow cytometry. Appl Environ Microbiol 73:3283–3290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18:463–470

    Article  CAS  PubMed  Google Scholar 

  • Booth IR (2002) Stress and the single cell: Intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    Article  PubMed  Google Scholar 

  • Breeuwer P, Abee T (2004) Assessment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques. In: Kowalchuk GA, de Bruijn FJ, Head IM (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Amsterdam, pp  1563–1580

  • Creach V, Baudoux AC, Bertru G, Rouzic BL (2003) Direct estimate of active bacteria: CTC use and limitation. J Microbiol Methods 52:19–28

    Article  CAS  PubMed  Google Scholar 

  • Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212

    Article  CAS  PubMed  Google Scholar 

  • Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Micriobiol 10:30–38

    Article  CAS  Google Scholar 

  • Doherty SB, Wang L, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2010) Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices. J Microbiol Methods 82:301–310

    Article  CAS  PubMed  Google Scholar 

  • Duhamel S, Gregori G, Van Wambeke F, Mauriac R, Nedoma J (2008) A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry. J Microbiol Methods 75:269–278

    Article  CAS  PubMed  Google Scholar 

  • Hoefel D, Grooby WL, Monis PT, Andrew S, Saint CP (2003) Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. J Microbiol Methods 55:585–597

    Article  PubMed  Google Scholar 

  • Holland-Staley CA, Lee K, Clark DP, Cunningham PR (2000) Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 182:6049–6054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov V (2010) Environmental microbiology for engineers. CRC, Boca Raton

    Google Scholar 

  • Ivanov V, Rezaeinejad S, Yi S, Wang XH (2008) Physiological heterogeneity of suspended microbial aggregates. Water Sci Technol 58:2435–2441

    Article  PubMed  Google Scholar 

  • Ivanov V, Rezaeinejad S, Chu J (2013) Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts. J Bioenerg Biomembr 45:505–510

    Article  CAS  PubMed  Google Scholar 

  • Kaprelyants AS, Kell DB (1993) The use of 5-cyano-2,3-ditolyl tetrazolium chloride and flow cytometry for the visualisation of respiratory activity in individual cells of Micrococcus luteus. J Microbiol Methods 17:115–122

    Article  CAS  Google Scholar 

  • Lees GJ, Jago GR (1978) Role of acetaldehyde in metabolism: a review. 1 Enzymes catalyzing reactions involving acetaldehyde. J Dairy Sci 6:1205–1215

    Article  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Lenz P, Sogaard-Andersen L (2011) Temporal and spatial oscillations in bacteria. Nat Rev Microbiol 9:565–577

    Article  CAS  PubMed  Google Scholar 

  • Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Amoros R, Mason DJ, Lloyd D (1995) Use of two oxonols and a fluorescent tetrazolium dye to monitor starvation of Escherichia coli in seawater by flow cytometry. J Microbiol Methods 22:165–176

    Article  Google Scholar 

  • Magdanova LA, Golyasnaya NV (2013) Heterogeneity as an adaptive trait of microbial populations. Microbiology 82:1–10

    Article  CAS  Google Scholar 

  • Muller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    PubMed  Google Scholar 

  • Muller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113

    Article  PubMed  Google Scholar 

  • Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6:103–116

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    CAS  PubMed  Google Scholar 

  • Patra P, Klumpp S (2013) Population dynamics of bacterial persistence. PLoS One 8:e62814. doi:10.1371/journal.pone.0062814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pirog TP, Kovalenko MA, Kuzminskaya YV (2003) Intensification of exopolysaccharide synthesis by Acinetobacter sp. on an ethanol–glucose mixture: aspects related to biochemistry and bioenergetics. Microbiology 72:305–312

    Article  CAS  Google Scholar 

  • Plapp BV, Lee ATI, Khanna A, Pryor JM (2013) Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol. Chem Biol Interact 202:104–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quiros C, Herrero M, Garcia LA, Diaz M (2007) Application of flow cytometry to segregated kinetic modelling based on the physiological states of microorganisms. Appl Environ Microbiol 73:3993–4000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rezaeinejad S, Ivanov V (2011) Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiol Res 166:129–135

    Article  CAS  PubMed  Google Scholar 

  • Ryall B, Eydallin G, Ferenci T (2012) Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 76:597–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheel M, Lütke-Eversloh T (2013) New options to engineer biofuel microbes: development and application of a high-throughput screening system. Metab Eng 17:51–58

    Article  CAS  PubMed  Google Scholar 

  • Shapiro HM (2000) Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Methods 42:13–16

    Article  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7:822–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79:7116–7121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Gonsalez R, Bobik TA (2011) Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli. Appl Environ Microbiol 77:6441–6450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from Iowa State University, and from Nanyang Technological University, Singapore. We are grateful to Mr. Kumaravel Kandaswamy for his technical assistance in performing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V., Rezaeinejad, S. & Stabnikova, O. Physiological comparison of cells with high and low alcohol dehydrogenase activities in bacterial populations consuming ethanol. Ann Microbiol 65, 1007–1016 (2015). https://doi.org/10.1007/s13213-014-0945-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0945-5

Keywords

Navigation