Advertisement

Annals of Microbiology

, Volume 64, Issue 4, pp 1587–1596 | Cite as

Detection of some phenotypic and genotypic characteristics of Staphylococcus aureus isolated from food items in the Czech Republic

  • Babek AlibayovEmail author
  • Kamila Zdeňková
  • Sabina Purkrtová
  • Kateřina Demnerová
  • Renata Karpíšková
Original Article

Abstract

Staphylococcus aureus is an important foodborne pathogen and can produce a wide range enterotoxins, which contribute to food poisoning. The aim of this study was to interrogate foodborne strains of S. aureus for phenotypic and genotypic characteristics. Strains were screened for enterotoxins, hemolysins and antimicrobial resistance, and the genetic relationship between strains was described after pulsed-field gel electrophoresis (PFGE) analysis. Of the S. aureus strains, 82.8 % (n = 93) harboured one or more of the following enterotoxin genes (sea, seb, sec, sed, see, seg, seh, sei, sej); 39.8 % of strains demonstrated se genes and 43 % carried from two to five se genes, while 17.2 % of the strains possessed none of the genes examined. The most commonly detected toxin genes were sea, seb, sec and seg. The presence of genes coding for antibiotic resistance such as blaZ, vanA, vanB and mecA was investigated by polymerase chain reaction (PCR). Seventy-two strains carrying the blaZ gene exhibited phenotypic resistance to ampicillin and penicillin. Ten strains (10.75 %) carried the mecA gene and correspondingly demonstrated resistance to oxacillin. The presence of vancomycin resistance genes, vanA and vanB, was not detected. Genotypic subtyping was performed using PFGE with SmaI restriction enzyme. The genetic relationships between enterotoxin harboring strains and non-enterotoxigenic strains were explored. Twenty-four different pulsotypes were generated from 93 food isolates with a similarity level of 88 %.

Keywords

Staphylococcus aureus Multiplex PCR PFGE Antimicrobial resistance Enterotoxin 

Notes

Acknowledgments

The authors thank Prof. Dr. Burhan CETINKAYA (Department of Microbiology, Faculty of Veterinary Medicine, Firat University, Turkiye) and MSc Clinical Microbiology Sharon L. Kleinschmidt (Member of: Australian Society of Microbiology and Australian Society of Antimicrobials, Division of Microbiology, Princess Alexandra Hospital (Queensland Health)) for critical reading of the manuscript.

References

  1. Anderson KL, Lyman RL, Bodeis-Jones SM, White DG (2006) Genetic diversity and antimicrobial susceptibility profiles among mastitis-causing Staphylococcus aureus isolated from bovine milk samples. Am J Vet Res 67:1185–1191PubMedCrossRefGoogle Scholar
  2. André MD, Campos MR, Borges LJ, Kipnis A, Pimenta FC, Serafini AB (2008) Comparison of Staphylococcus aureus isolates from food handlers, raw bovine milk and Minas Frescal cheese by antibiogram and pulsed-field gel electrophoresis following SmaI digestion. Food Control 19:200–207CrossRefGoogle Scholar
  3. Argudín MA, Rodicio MR, Guerra B (2009) The emerging methicillin-resistant Staphylococcus aureus ST398 clone can easily be typed using the Cfr9I SmaI-neoschizomer. Lett Appl Microbiol 50:127–130CrossRefGoogle Scholar
  4. Argudín MA, Mendoza MC, Rodicio MR (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins 7:1751–1773CrossRefGoogle Scholar
  5. Asperger H, Zangerl P (2003) Staphylococcus aureus. In: Roginski H, Fuquay JW, Fox PF (eds) Encyclopedia of Dairy Sciences. Academic Press and Elsevier Science, Amsterdam, pp 2563–2569Google Scholar
  6. Aydin A, Sudagidan M, Muratoglu K (2011a) Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int J Food Microbiol 148:99–106PubMedCrossRefGoogle Scholar
  7. Aydin A, Muratoglu K, Sudagidan M, Bostan K, Okuklu B, Harsa S (2011b) Prevalence and antibiotic resistance of foodborne Staphylococcus aureus isolates in Turkey. Foodborne Pathog Dis 8:63–69PubMedCrossRefGoogle Scholar
  8. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10PubMedCrossRefGoogle Scholar
  9. Bania J, Dabrowska A, Bystron J, Korzekwa K, Chrzanowska J, Molenda J (2006) Distribution of newly described enterotoxin-like genes in Staphylococcus aureus from food. Int J Food Microbiol 108:36–41PubMedCrossRefGoogle Scholar
  10. Bardoň J, Kolář M, Vágnerová I, Čekanová L (2006) Rezistence vůči antibiotikům u kmenů Escherichia coli, Proteus mirabilis, Staphylococcus sp., Enterococcus sp. izolovaných v chovech telat. Veterinarstvi 4:249–252Google Scholar
  11. C.L.S.I. (2010) Performance standards for antimicrobial susceptibility testing 17th edn. Information supplement M100–S17. CLSI, Wayne, PA, USA.Google Scholar
  12. Chao G, Zhou X, Jiao X, Qian X, Xu L (2007) Prevalence and antimicrobial resistance of foodborne pathogens isolated from food products in China. Foodborne Pathog Dis 4:277–284PubMedCrossRefGoogle Scholar
  13. El-Jakee J, Nagwa AS, Bakry M, Zouelfakar SA, Elgabry E, El-Said WAG (2008) Characteristics of Staphylococcus aureus strains isolated from human and animal sources. Am Eurasian J Agric Environ Sci 4:221–229Google Scholar
  14. Fueyo JM, Mendoza MC, Martin MC (2005) Enterotoxins and toxic shock syndrome toxin in Staphylococcus aureus recovered from human nasal carriers and manually handled foods: epidemiological and genetic findings. Microbes Infect 7:187–194PubMedCrossRefGoogle Scholar
  15. I.S.O 6888–1:1999 (1999) Microbiology of food and animal feeding stuffs-horizontal method for the enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other species). Part 1: technique using Baird-Parker Agar Medium International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  16. ISO 6888–2:1999 (1999) Microbiology of food and animal feeding stuffs-horizontal method for the enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other species). Part 2: technique using Rabbit-Plasma Fibrinogen Agar Medium International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  17. Jablonski LM, Bohach GA (2001) Staphylococcus aureus. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology: Fundamentals and Frontiers, 2nd edn. ASM Press, Washington, pp 411–434Google Scholar
  18. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677PubMedCrossRefGoogle Scholar
  19. Jørgensen HJ, Mørk T, Caugant DA, Kearns A, Rørvik LM (2005) Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk. Appl Environ Microbiol 71:8352–8361PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kérouanton A, Hennekinne JA, Letertre C, Petit L, Chesneau O, Brisabois A, De Buyser ML (2007) Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int J Food Microbiol 115:369–375PubMedCrossRefGoogle Scholar
  21. Løvseth A, Loncarevic S, Berdal KG (2004) Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J Clin Microbiol 42:3869–3872PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lozano C, López M, Gómez-Sanz E, Ruiz-Larrea F, Torres C, Zarazaga M (2009) Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. J Antimicrob Chemother 64:1325–1326PubMedCrossRefGoogle Scholar
  23. Lu S, Tang Z, Li X, Huang Y (2010) Prevanlence antibiotic susceptibility and enterotoxin gene patterns of Staphylococcus aureus in raw milk Nanning City. J Appl Prev Med 16:271–274Google Scholar
  24. Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071PubMedCentralPubMedCrossRefGoogle Scholar
  25. Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG (1998) Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 36:618–623PubMedCentralPubMedGoogle Scholar
  26. Monday SR, Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol 37:3411–3414PubMedCentralPubMedGoogle Scholar
  27. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S (1991) Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 29:2240–2244PubMedCentralPubMedGoogle Scholar
  28. Normanno G, La Salandra G, Dambrosio A, Quaglia NC, Corrente M, Parisi A, Santagada G, Firinu A, Crisetti E, Celano GV (2007) Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int J Food Microbiol 115:290–296PubMedCrossRefGoogle Scholar
  29. Omoe K, Imanishi K, Hu DL, Kato H, Takahashi-Omoe H, Nakane A, Uchiyama T, Shinagawa K (2004) Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun 72:3664–3667PubMedCentralPubMedCrossRefGoogle Scholar
  30. Peles F, Wagner M, Varga L, Hein I, Rieck P, Gutser K, Keresztúri P, Kardos G, Turcsányi I, Béri B, Szabó A (2007) Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int J Food Microbiol 118:186–193PubMedCrossRefGoogle Scholar
  31. Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira P (2009) Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol 26:278–282PubMedCrossRefGoogle Scholar
  32. Pesavento G, Ducci B, Comodo N, Lo Nostro A (2007) Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: a research for methicillin resistant Staphylococcus aureus (MRSA). Food Control 18:196–200CrossRefGoogle Scholar
  33. Pu S, Wang F, Ge B (2011) Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus isolates from Louisiana retail meats. Foodborne Pathog Dis 8:299–306PubMedCrossRefGoogle Scholar
  34. Rhee CH, Woo GJ (2010) Emergence and characterization of foodborne methicillin-resistant Staphylococcus aureus in Korea. J Food Prot 73:2285–2290PubMedGoogle Scholar
  35. Růžičková V, Karpíšková R, Pantůček R, Pospíšilová M, Černíková P, Doškař J (2008) Genotype analysis of enterotoxin H-positive Staphylococcus aureus strains isolated from food samples in the Czech Republic. Int J Food Microbiol 121:60–65PubMedCrossRefGoogle Scholar
  36. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  37. Sauer P, Síla J, Stosová T, Vecerová R, Hejnar P, Vágnerová I, Kolár M, Raclavsky V, Petrzelová J, Lovecková Y, Koukalová D (2008) Prevalence of genes encoding extracellular virulence factors among meticillin-resistant Staphylococcus aureus isolates from the University Hospital, Olomouc, Czech Republic. J Med Microbiol 57:403–410PubMedCrossRefGoogle Scholar
  38. Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P (2011) The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assesment. Virulence 2:580–592PubMedCentralPubMedCrossRefGoogle Scholar
  39. Spanu V, Spanu C, Virdis S, Cossu F, Scarano C, De Santis EP (2012) Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep’s milk cheese. Int J Food Microbiol 153:53–57PubMedCrossRefGoogle Scholar
  40. Srinivasan V, Sawant AA, Gillespie BE, Headrick SJ, Ceasaris L, Oliver SP (2006) Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog Dis 3:274–283PubMedCrossRefGoogle Scholar
  41. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedCentralPubMedGoogle Scholar
  42. Valihrach L, Demnerova K, Karpiskova R, Melenova I (2009) The Expression of Selected Genes Encoding Enterotoxins in Staphylococcus aureus Strains. Czech J Food Sci 27:56–65Google Scholar
  43. van Loo IH, Diederen BM, Savelkoul PH, Woudenberg JH, Roosendaal R, van Belkum A, Lemmens-den Toom N, Verhulst C, van Keulen PH, Kluytmans JA (2007) Methicillin-resistant Staphylococcus aureus in meat products, the Netherlands. Emerg Infect Dis 13:1753–1755PubMedCentralPubMedCrossRefGoogle Scholar
  44. Wang X, Meng J, Zhang J, Zhou T, Zhang Y, Yang B, Xi M, Xia X (2012) Characterization of Staphylococcus aureus isolated from powdered infant formula milk and infant rice cereal in China. Int J Food Microbiol 153:142–147PubMedCrossRefGoogle Scholar
  45. Weese JS, Avery BP, Reid-Smith RJ (2010) Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett Appl Microbiol 51:338–342PubMedCrossRefGoogle Scholar
  46. Weller TM (2000) Methicillin-resistant Staphylococcus aureus typing methods: which should be the international standard? J Hosp Infect 44:160–172PubMedCrossRefGoogle Scholar
  47. Zhang S, Iandolo JJ, Stewart GC (1998) The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett 168:227–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  • Babek Alibayov
    • 1
    Email author
  • Kamila Zdeňková
    • 1
  • Sabina Purkrtová
    • 1
  • Kateřina Demnerová
    • 1
  • Renata Karpíšková
    • 2
    • 3
  1. 1.Department of Biochemistry and Microbiology, Faculty of Food and Biochemical TechnologyInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Department of Milk Hygiene and TechnologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  3. 3.Veterinary Research InstituteBrnoCzech Republic

Personalised recommendations