Annals of Microbiology

, Volume 64, Issue 3, pp 899–903 | Cite as

Celiac disease microbiota and its applications

  • Iulia Lupan
  • Genel Sur
  • Diana Deleanu
  • Victor Cristea
  • Gabriel SamascaEmail author
  • Peter Makovicky
Review Article


Intestinal microbiota plays an important role in maintaining the overall health of an individual. It can be affected by diet but also inflammation of the intestine due to various causes. In the last decade, particular attention has been paid to the study of the interaction between mucosal cells and intestinal microbiota, and to the host immune response to change in community structure. Here, we review the most significant studies on human microbiota in patients with celiac disease, and also the potential biotechnological use of microorganisms for the production of gluten-free products.


Adolescence Gluten-free Microbiology Sorghum 


Conflict of interest

The authors report no conflicts of interest.


  1. Arendt EK, Moroni A, Zannini E (2011) Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb Cell Fact 10:S15PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ashorn S, Välineva T, Kaukinen K, Ashorn M, Braun J, Raukola H, Rantala I, Collin P, Mäki M, Luukkaala T, Iltanen S (2009) Serological responses to microbial antigens in celiac disease patients during a gluten-free diet. J Clin Immunol 29:190–195PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bergamo P, Maurano F, Mazzarella G, Iaquinto G, Vocca I, Rivelli AR, De Falco E, Gianfrani C, Rossi M (2011) Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol Nutr Food Res 55:1266–1270PubMedCrossRefGoogle Scholar
  4. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138:1796S–1800SPubMedGoogle Scholar
  5. Cheng J, Palva AM, de Vos WM, Satokari R (2011) Contribution of the Intestinal Microbiota to Human Health: From Birth to 100 Years of Age. Curr Top Microbiol Immunol 358:323–346. doi: 10.1007/82_2011_189
  6. Collado MC, Calabuig M, Sanz Y (2007) Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol 8:9–14PubMedGoogle Scholar
  7. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 8:232PubMedCentralPubMedCrossRefGoogle Scholar
  8. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2009) Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 62:264–269PubMedCrossRefGoogle Scholar
  9. De Palma G, Nadal I, Collado MC, Sanz Y (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102:1154–1160PubMedCrossRefGoogle Scholar
  10. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 10:63PubMedCentralPubMedCrossRefGoogle Scholar
  11. De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, Garrote JA, Polanco I, López A, Ribes-Koninckx C, Marcos A, García-Novo MD, Calvo C, Ortigosa L, Peña-Quintana L, Palau F, Sanz Y (2012) Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One 7:e30791PubMedCentralPubMedCrossRefGoogle Scholar
  12. Decker E, Hornef M, Stockinger S (2011) Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Gut Microbes 2:91–98PubMedCrossRefGoogle Scholar
  13. Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Parrilli G, Minervini F, Arendt E, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096PubMedCentralPubMedCrossRefGoogle Scholar
  14. Di Cagno R, Rizzello CG, Gagliardi F, Ricciuti P, Ndagijimana M, Francavilla R, Guerzoni ME, Crecchio C, Gobbetti M, De Angelis M (2009) Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol 75:3963–3971PubMedCentralPubMedCrossRefGoogle Scholar
  15. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R (2011) Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol 11:219PubMedCentralPubMedCrossRefGoogle Scholar
  16. Friman V, Nowrouzian F, Adlerberth I, Wold AE (2002) Increased frequency of intestinal Escherichia coli carrying genes for S. fimbriae and haemolysin in IgA-deficient individuals. Microb Pathog 32:35–42PubMedCrossRefGoogle Scholar
  17. Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112PubMedCrossRefGoogle Scholar
  18. Gerez CL, Font de Valdez G, Rollán GC (2008) Functionality of lactic acid bacteria peptidase activities in the hydrolysis of gliadin-like fragments. Lett Appl Microbiol 47:427–432PubMedCrossRefGoogle Scholar
  19. Gerez CL, Dallagnol A, Rollán G, Font de Valdez G (2012) A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation. Food Microbiol 32:427–430PubMedCrossRefGoogle Scholar
  20. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Sourdough lactobacilli and celiac disease. Food Microbiol 24:187–196PubMedCrossRefGoogle Scholar
  21. Hedberg ME, Moore ER, Svensson-Stadler L, Hörstedt P, Baranov V, Hernell O, Wai SN, Hammarström S, Hammarström ML (2012) Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prevot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov. Int J Syst Evol Microbiol 62:2685–2690PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ivanov II, Honda K (2012) Intestinal commensal microbes as immune modulators. Cell Host Microbe 12:496–508PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kamilova AT, Akhmedov NN, Pulatova DB, Nurmatov BA (2001) Intestinal microbiocenosis in children with intestinal enzymopathy. Zh Mikrobiol Epidemiol Immunobiol 3:97–99PubMedGoogle Scholar
  24. Kopecný J, Mrázek J, Fliegerová K, Kott T (2006) Effect of gluten-free diet on microbes in the colon. Folia Microbiol (Praha) 51:287–290CrossRefGoogle Scholar
  25. Kopecný J, Mrázek J, Fliegerová K, Frühauf P, Tucková L (2008) The intestinal microflora of childhood patients with indicated celiac disease. Folia Microbiol (Praha) 53:214–216CrossRefGoogle Scholar
  26. M’hir S, Rizzello CG, Di Cagno R, Cassone A, Hamdi M (2009) Use of selected enterococci and Rhizopus oryzae proteases to hydrolyse wheat proteins responsible for celiac disease. J Appl Microbiol 106:421–431PubMedCrossRefGoogle Scholar
  27. Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm (Lond) 5:19CrossRefGoogle Scholar
  28. Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684PubMedCrossRefGoogle Scholar
  29. Moroni AV, Arendt EK, Dal BF (2011) Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol 28:497–502PubMedCrossRefGoogle Scholar
  30. Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674PubMedCrossRefGoogle Scholar
  31. Nistal E, Caminero A, Herrán AR, Arias L, Vivas S, de Morales JM, Calleja S, de Miera LE, Arroyo P, Casqueiro J (2012) Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis 18:649–656PubMedCrossRefGoogle Scholar
  32. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507PubMedCentralPubMedCrossRefGoogle Scholar
  33. Rizzello CG, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M (2009) Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 131:189–196CrossRefGoogle Scholar
  34. Rollán G, De Angelis M, Gobbetti M, de Valdez GF (2005) Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli. J Appl Microbiol 99:1495–1502PubMedCrossRefGoogle Scholar
  35. Rühmkorf C, Jungkunz S, Wagner M, Vogel RF (2012) Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol 32:286–294PubMedCrossRefGoogle Scholar
  36. Salvatore S, Hauser B, Devreker T, Arrigo S, Vandenplas Y (2008) Chronic enteropathy and feeding in children: an update. Nutrition 24:1205–1216PubMedCrossRefGoogle Scholar
  37. Samaşca G, Sur G, Lupan I (2013) Current trends and investigative developments in celiac disease. Immunol Invest 42:273–284PubMedCrossRefGoogle Scholar
  38. Sánchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol 8:50PubMedCentralPubMedCrossRefGoogle Scholar
  39. Sánchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 63:1105–1111PubMedCrossRefGoogle Scholar
  40. Sánchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, Varea V, Marcos A, Garrote JA, Polanco I, López A, Ribes-Koninckx C, García-Novo MD, Calvo C, Ortigosa L, Palau F, Sanz Y (2011) Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol 77:5316–5323PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sánchez E, Laparra JM, Sanz Y (2012a) Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 78:6507–6515PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sánchez E, Ribes-Koninckx C, Calabuig M, Sanz Y (2012b) Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol 65:830–834PubMedCrossRefGoogle Scholar
  43. Sanz Y (2010) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes 1:135–137PubMedCentralPubMedCrossRefGoogle Scholar
  44. Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F (2007) Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 51:562–568PubMedCrossRefGoogle Scholar
  45. Sanz Y, De Pama G, Laparra M (2011) Unraveling the ties between celiac disease and intestinal microbiota. Int Rev Immunol 30:207–218PubMedCrossRefGoogle Scholar
  46. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, Longhi C, Maiella G, Cucchiara S, Conte MP (2010) A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol 10:175PubMedCentralPubMedCrossRefGoogle Scholar
  47. Serban DE (2011) The gut microbiota in the metagenomics era: sometimes a friend, sometimes a foe. Roum Arch Microbiol Immunol 70:134–140PubMedGoogle Scholar
  48. Sun-Waterhouse D, Chen J, Chuah C, Wibisono R, Melton LD, Laing W, Ferguson LR, Skinner MA (2009) Kiwifruit-based polyphenols and related antioxidants for functional foods: kiwifruit extract-enhanced gluten-free bread. Int J Food Sci Nutr 60:251–264PubMedCrossRefGoogle Scholar
  49. Tlaskalová-Hogenová H, Farré-Castany MA, Stĕpánková R, Kozáková H, Tucková L, Funda DP, Barot R, Cukrowska B, Sinkora J, Mandel L, Karská K, Kolínská J (1995) The gut as a lymphoepithelial organ: the role of intestinal epithelial cells in mucosal immunity. Folia Microbiol (Praha) 40:385–391CrossRefGoogle Scholar
  50. Zannini E, Jones JM, Renzetti S, Arendt EK (2012a) Functional replacements for gluten. Annu Rev Food Sci Technol 3:227–245PubMedCrossRefGoogle Scholar
  51. Zannini E, Pontonio E, Waters DM, Arendt EK (2012b) Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol 93:473–485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2013

Authors and Affiliations

  • Iulia Lupan
    • 1
  • Genel Sur
    • 2
  • Diana Deleanu
    • 3
  • Victor Cristea
    • 3
  • Gabriel Samasca
    • 3
    Email author
  • Peter Makovicky
    • 4
  1. 1.Molecular Biology Center, Institute for Interdisciplinary Research on Bio-Nano-SciencesBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Pediatrics IIIuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
  3. 3.Department of Immunology“Iuliu Haţieganu” University of Medicine and PharmacyCluj-NapocaRomania
  4. 4.Department of Veterinary ScienceCzech University of Life SciencePragueCzech Republic

Personalised recommendations