Skip to main content
Log in

Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This study investigated the biomass, lipid production, fatty acid content, and other nutrients present in microorganisms by using four culture methods: (1) photoautotrophic pure Chlorella vulgaris cultures (PP); (2) heterotrophic pure C. vulgaris cultures (PH); (3) mixed cultures of Rhodotorula glutinis and C. vulgaris under photoautotrophic conditions (MP); and (4) heterotrophic mixed cultures (MH). The microorganisms in MP culture showed the optimum growth condition and lipid production. Among the cultures, MP yielded the highest number of cells and biomass (5.9 × 105 cells/mL and 0.523 g/L, respectively). Furthermore, lipid production in MP culture was 114.22 mg/L, which is 136 % higher than that in MH culture (48.22 mg/L). Considering the higher contents of palmitic acid (C16:0) at 24.65 %, oleic acid (C18:1) at 56.34 %, and protein at 42.39 g/100 g in the MP culture than in other cultures, we proposed that MP could be used effectively to support the growth of microorganisms. This method could also be used as a potential approach for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  PubMed  Google Scholar 

  • Benevides NMB, Silva SMS, Magalhães SR, Melo FR, Freitas ALP, Vasconcelos IM (1998) Proximate analysis, toxic and anti-nutritional factors of ten Brazilian Marine Algae. Rev Bras Fisiol Veg 10(1):31–36

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. Prog Ind Microbiol 35:313–321

    Article  Google Scholar 

  • Buzzini P (2000) An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J Ind Microbiol Biotechnol 24(1):41–45

    Article  CAS  Google Scholar 

  • Buzzini P, Martini A (2000) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71(1):41–44

    Article  CAS  Google Scholar 

  • Cai SQ, Hu CQ, Du SB (2007) Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng 104(5):391–397

    Article  CAS  PubMed  Google Scholar 

  • Cheirsilp B, Kitcha S, Torpee S (2012) Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Ann Microbiol 62(3):987–993

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1995) A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. J Appl Phycol 7:43–46

    Article  CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Collis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6(6):333–345

    Article  CAS  Google Scholar 

  • Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37(1):65–71

    Article  CAS  Google Scholar 

  • Crowe B, Attalah S, Shweta A, Waller P, Ryan R, Wagenen JV, Chavis A, Kyndt J, Kacira M, Ogden KL, Huesemann M (2012) A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int J Chem Eng. doi:10.1155/2012/920608

    Google Scholar 

  • Durako MJ, Dawes CJ (1980) A comparative seasonal study of two populations of Hypnea musciformis from the East and West Coasts of Florida, USA. Mar Biol 59:151–156

    Article  CAS  Google Scholar 

  • Eugenia M, Talos D, Panaitescu M (1997) Studies on metabolic role of Rhodotorula rubra 120 r carotenoid pigments, used as a fodder additive concentrate, in laying hens nutrition. Roum Biotechnol Lett 2:55–60

    Google Scholar 

  • Fakas S, Panayotoua MG, Papanikolaoua S, Komaitisb M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40:1321–1327

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40(2):733–738

    Article  CAS  Google Scholar 

  • Jham GN, Teles FFF, Campos LG (1982) Use of aqueous HCl/MeOH as esterification reagent for analysis of fatty acids derived from soybean lipids. J Am Oil Chem Soc 59(3):132–133

    Article  CAS  Google Scholar 

  • Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipids and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78(4):341–346

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energ Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Li M, Gong R, Rao X, Liu Z, Wang X (2005) Effects of nitrate concentration on growth and fatty acid composition of the marine microalga Pavlova viridis (Prymnesiophyceae). Ann Microbiol 55(1):51–55

    CAS  Google Scholar 

  • Li Q, Wang MY (1997) Use food industry waste to produce microbial oil. Sci Technol Food Ind 6:65–69

    Google Scholar 

  • Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  PubMed  Google Scholar 

  • Marova I, Carnecka M, Halienova A, Breierova E, Koci R (2010) Production of carotenoid-/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol Biotechnol 48(1):56–61

    CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  Google Scholar 

  • Metting B, Pyne JW (1996) Biologically active compounds from microalgae. Enzym Microb Technol 8:386–394

    Article  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba G, Choi W, Lee CG, Lee K (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour Technol 123:279–283

    Article  CAS  PubMed  Google Scholar 

  • Naidu KA, Venkateswaran G, Vijayalakshmi G (1999) Toxicological assessment of the yeast Rhodotorula gracilis in experimental animals. Z Lebensm Unters Forsch 208:444–448

    Article  CAS  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97(4):867–875

    Article  CAS  PubMed  Google Scholar 

  • Pruvost J, Vooren GV, Gouic BL, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  PubMed  Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng 16:23–33

    Article  CAS  Google Scholar 

  • Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25(4):686–692

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Taha EM, Omar O, Yusoff WMW, Hamid AA (2010) Lipid biosynthesis in Cunninghamella bainieri 2A1 in N-limited and N-excess media. Ann Microbiol 60(4):615–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Webb KL, Chu FE (1983) Phytoplankton as a food source for bivalve larvae. In: Pruder GD, Langdon CJ, Conklin DE (eds) Proc. of the 2nd int. conf. aquaculture nutrition, World Mariculture Society, Spec. Publ. Louisiana State University, Louisiana, p 2

    Google Scholar 

  • Xue F, Miao J, Zhang X, Tan T (2010) A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis Appl. Biochem Biotechnol 160(2):498–503

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  PubMed  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipids production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99(16):7881–7885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the New Century Excellent Talents Program in University (Grant No. NCET-11-0587) of the Ministry of Education, the National Natural Science Foundation of China (Grant No. 31201339), the Special Scientific Research Fund of Forestry Public Welfare Profession of China (Grant No. 201304805), the National High Technology Research and Development Program of China (863 Program, Grant No. 2013AA102205), the Twelfth Five-Year National Science and Technology Support Program of China (Grant No. 2012BAD33B04), the Cultivation Program of Hundred Talents in the Science and Technology Field in Beijing (Grant No. Z131110000513026), and International Science and Technology Cooperation Programme (Grant No. 2010DFB63750) of the Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Difeng Ren or Jun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Sun, B., She, X. et al. Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Ann Microbiol 64, 1239–1246 (2014). https://doi.org/10.1007/s13213-013-0766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0766-y

Keywords

Navigation