Skip to main content

Advertisement

Log in

Phylogeny and ecophysiological features of prokaryotes isolated from temporary saline tidal pools

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Although hypersaline environments have been extensively examined, only a limited number of microbial community studies have been performed in saline tide pools. We have studied a temporary salt-saturated tide pool and isolated prokaryotes from the water. Chlorinity measurements revealed that the tide pool brine could be characterized as one of the most hypersaline ecosystems on earth. Enumeration of microorganisms at different salinities showed that the tide pool was dominated by moderate halophiles. Based on 16S rRNA gene sequence analysis, the prokaryotic strains isolated were related to the bacterial genera Rhodovibrio, Halovibrio, Aquisalimonas, Bacillus and Staphylococcus and to the haloarchaeal species Haloferax alexandrinus. Four bacterial isolates were distantly related to their closest validly described species Aquisalimonas asiatica (96.5 % similarity), representing a novel phylogenetic linkage. Ecophysiological analysis also revealed distinct phenotypic profiles for the prokaryotic strains analyzed. The herbicide 2,4-dichlorophenoxyacetate could be effectively utilized by selected strains as the sole carbon source, but phenolic compounds could not be utilized by any of the halophilic isolates examined. None of the halophilic strains were able to grow without the presence of sea salt or seawater. Based on these results, we conclude that moderate halophilic bacteria rather than extremely halophilic archaea dominate in such a hypersaline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andrei AŞ, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Ohta Y (2002) Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int J Syst Evol Microbiol 52:729–738

    Article  CAS  PubMed  Google Scholar 

  • Baati H, Jarboui R, Gharsallah N, Sghir A, Ammar E (2011) Molecular community analysis of magnesium-rich bittern brine recovered from a Tunisian solar saltern. Can J Microbiol 57:975–981

    Article  CAS  PubMed  Google Scholar 

  • Bodaker I, Sharon I, Suzuki MT, Feingersch R, Shmoish M, Andreishcheva E, Sogin ML, Rosenberg M, Maguire ME, Belkin S, Oren A (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399–407

    Article  PubMed  Google Scholar 

  • Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5:1701–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the Great Salt Plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58:519–528

    Article  CAS  PubMed  Google Scholar 

  • Genthe B, Kfir R, Franck M (1995) Microbial quality of a marine tidal pool. Water Sci Technol 31:299–302

    Article  Google Scholar 

  • Godinho WO, Lotufo TMC (2010) Local v. microhabitat influences on the fish fauna of tidal pools in north-east Brazil. J Fish Biol 76:487–501

    Article  CAS  PubMed  Google Scholar 

  • Huggett J, Griffiths CL (1986) Some relationships between elevation, physico-chemical variable and biota of intertidal rock pools. Mar Ecol Prog Ser 29:189–197

    Article  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Chapter  Google Scholar 

  • Kleinsteuber S, Müller RH, Babel W (2001) Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5:375–384

    Article  CAS  PubMed  Google Scholar 

  • Kloos WE, Schleifer KH (1975) Isolation and characterization of staphylococci from human skin. Int J Syst Bacteriol 25:62–79

    Article  CAS  Google Scholar 

  • Kooistra WHCF, Joosten AMT, Hoek C (1989) Zonation patterns in intertidal pools and their possible causes: a multivariate approach. Bot Mar 32:9–26

    Article  Google Scholar 

  • Kunte HJ, Trüper H, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin, pp 185–200

    Google Scholar 

  • Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108:400–407

    Article  CAS  PubMed  Google Scholar 

  • Mack EE, Mandelco L, Woese CR, Madigan MT (1993) Rhodospirillum sodomense sp. nov., a dead Sea Rhodospirillum species. Arch Microbiol 160:363–371

    Article  CAS  Google Scholar 

  • Maltseva O, McGowan C, Fulthorpe R, Oriel P (1996) Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 142:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1137–1142

    Article  PubMed  Google Scholar 

  • Maturrano L, Santos F, Rossello-Mora R, Anton J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mutlu MB, Martínez-García M, Santos F, Peña A, Guven K, Antón J (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483

    Article  CAS  PubMed  Google Scholar 

  • Netto SA, Attrill MJ, Warwick RM (2003) The relationship between benthic fauna, carbonate sediments and reef morphology in reef-flat tidal pools of Rocas Atoll (north-east Brazil). J Mar Biol Assoc UK 83:425–432

    Article  Google Scholar 

  • Nissen H, Dundas ID (1984) Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 138:251–256

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2007) NTSYSpc: numerical taxonomy and multivariate analysis system. Exeter software, ver. 2.20. Exeter Publishing Ltd, Setauket

    Google Scholar 

  • Sahl JW, Pace NR, Spear JR (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl Environ Microbiol 74:6444–6446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schulte PM (2007) Water chemistry. In: Denny MW, Gaines SD (eds) Encyclopedia of tide pools and rocky shores. University of California Press, Berkeley, pp 608–611

    Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Belloch C, Tindall BJ (2006) Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56:379–388

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S ribosomal RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G, Piceno Y, Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159:609–627

    Article  PubMed  Google Scholar 

  • Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjelleberg S (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J 4:301–311

    Article  PubMed  Google Scholar 

  • Van De Peer Y, De Wachter R (1994) Treecon for windows: a software package for the construction and drawing of evolutionary trees for the microsoft windows environment. Bioinformatics 10:569–570

    Article  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood RB, Talling JF (1988) Chemical and algal relationship in a salinity series of Ethiopian inland waters. Hydrobiologia 158:29–67

    Article  CAS  Google Scholar 

  • Yanase H, Zuzan K, Kita K, Sogabe S, Kato N (1992) Degradation of phenols by thermophilic and halophilic bacteria isolated from a marine brine sample. J Ferment Bioeng 74:297–300

    Article  CAS  Google Scholar 

  • Zhuang S (2006) Species richness, biomass and diversity of macroalgal assemblages in tide pools of different sizes. Mar Ecol Prog Ser 309:67–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Ntougias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntougias, S. Phylogeny and ecophysiological features of prokaryotes isolated from temporary saline tidal pools. Ann Microbiol 64, 599–609 (2014). https://doi.org/10.1007/s13213-013-0693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0693-y

Keywords