Skip to main content
Log in

Desulfovibrio vulgaris Hildenborough prefers lactate over hydrogen as electron donor

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Desulfovibrio vulgaris can use lactate as an electron donor and accumulate hydrogen. Hydrogen can also be consumed as an electron donor when lactate is depleted or absent. The aim of this study was to determine whether D. vulgaris has an electron donor preference system between lactate and hydrogen and how this system is regulated. In order to be sure that D. vulgaris was grown under the same conditions except for electron donors, continuous growth mode was conducted and the optical density (600 nm) was kept constant. When 20 mmol/l lactate was the sole electron donor, it was depleted after 9 h of incubation while hydrogen was accumulated to 1,500 ppm. After that, the hydrogen level was decreased to and maintained at 400 ppm. When 1,200 ppm hydrogen was provided as the electron donor, the culture reached an OD of 0.2 after 24 h incubation and hydrogen was consumed to 600 ppm. When 1,200 ppm hydrogen and 20 mmol/l lactate were both present, the lactate was consumed during the first 9 h incubation and hydrogen was accumulated to 1,800 ppm. D. vulgaris used hydrogen as an electron donor after the lactate was depleted and the hydrogen level was decreased to 600 ppm. D. vulgaris has both pathways to utilize lactate and hydrogen as electron donors. It prefers lactate over hydrogen and the system is regulated by lactate starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aubert C, Leroy G, Bianco P, Forest E, Bruschi M, Dolla A (1998) Characterization of the Cytochromes C from Desulfovibrio desulfuricans G201. Biochem Biophys Res Commun 242:213–218

    Article  CAS  PubMed  Google Scholar 

  • Aubert C, Brugna M, Dolla A, Bruschi M, Giudici-Orticoni MT (2000) A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol 1476:85–92

    Article  CAS  Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    Article  CAS  PubMed  Google Scholar 

  • Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate–reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R, Kulpa CF, Manning J (1998) Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: a review. Bioresour Technol 63:81–89

    Article  CAS  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40

    Article  CAS  PubMed  Google Scholar 

  • de Sousa DZM (2006) Ecology and physiology of anaerobic microbial communities that degrade long chain fatty acids. Doctorate thesis, Universidade do Minho

  • Dolla A, Pohorelic BK, Voordouw JK, Voordouw G (2000) Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol 174:143–151

    Article  CAS  PubMed  Google Scholar 

  • Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111–2127

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Cummings J, Macfarlane G (1991) Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Lett 86:103–111

    Article  CAS  Google Scholar 

  • Harder W, Kuenen J, Matin A (1977) A review. Microbial selection in continuous culture. J Appl Bacteriol 43:1–24

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  CAS  Google Scholar 

  • Ihssen J, Egli T (2005) Global physiological analysis of carbon–and energy–limited growing Escherichia coli confirms a high degree of catabolic flexibility and preparedness for mixed substrate utilization. Environ Microbiol 7:1568–1581

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Javaherdashti R (1999) A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future. Anti-Corrosion Methods Mater 46:173–180

    Article  CAS  Google Scholar 

  • Kerby R, Hong S, Ensign S, Coppoc L, Ludden P, Roberts G (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol 174:5284–5294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler E (1976) Microbial production and utilization of gases (H2, CH4, CO). In: Schlegel HG, Gottschalk G,Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 247–254

  • Krumholz LR, Bryant M (1986) Eubacterium oxidoreducens sp. nov. requiring H 2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14

    Article  CAS  Google Scholar 

  • Li X, Krumholz LR (2007) Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J Bacteriol 189:3705–3711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Londry K, Suflita J (1999) Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol 22:582–589

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips E (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Odom J, Peck H Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate–reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50

    Article  CAS  Google Scholar 

  • Pankhania I, Gow L, Hamilton W (1986a) The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. J Gen Microbiol 132:3349

    CAS  Google Scholar 

  • Pankhania I, Moosavi A, Hamilton W (1986b) Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J Gen Microbiol 132:3357–3365

    CAS  Google Scholar 

  • Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68:3129–3132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Philos Trans R Soc Lond B 298:443–466

    Article  CAS  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane–seeps. Chem Geol 205:443–467

    Article  CAS  Google Scholar 

  • Pfennig N, Widdel F, Postgate J (1982) The bacteria of the sulphur cycle [and discussion]. Philos Trans R Soc Lond B 298:433–441

    Article  CAS  Google Scholar 

  • Pieulle L, Magro V, Hatchikian EC (1997) Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J Bacteriol 179:5684–5692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G (2002) Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol 184:679–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

  • Postgate JR, Campbell LL (1966) Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabus R, Hansen T, Widdel F (2006) Dissimilatory sulfate-and sulfur-reducing prokaryotes. Prokaryotes 2:659–768

    Article  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160

    Article  CAS  Google Scholar 

  • Rajeev L, Hillesland KL, Zane GM, Zhou A, Joachimiak MP, He Z, Zhou J, Arkin AP, Wall JD, Stahl DA (2012) Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription. J Bacteriol 194:5783–5793

    Google Scholar 

  • Steger JL, Vincent C, Ballard JD, Krumholz LR (2002) Desulfovibrio sp. genes involved in the respiration of sulfate during metabolism of hydrogen and lactate. Appl Environ Microbiol 68:1932–1937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Traore AS, Hatchikian CE, Belaich JP, Le Gall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM, Westlake DWS (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol 56:3748–3754

    CAS  PubMed Central  PubMed  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415

    Article  CAS  Google Scholar 

  • White C, Gadd G (2000) Copper accumulation by sulfate–reducing bacterial biofilms. FEMS Microbiol Lett 183:313–318

    Article  CAS  PubMed  Google Scholar 

  • Wick LM, Quadroni M, Egli T (2001) Short–and long–term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose–excess to glucose–limited growth conditions in continuous culture and vice versa. Environ Microbiol 3:588–599

    Article  CAS  PubMed  Google Scholar 

  • Wieringa E, Overmann J, Cypionka H (2000) Detection of abundant sulphate–reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ Microbiol 2:417–427

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA (2011) How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9:452–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was supplied by grants from Lanzhou University, lzujbky-2011-32 and from Ministry of Education, P.R. China, National University Student Innovative Experiment Project, 860186. All the listed authors agreed to submit this manuscript to Annals of Microbiology in its present format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkai Li.

Additional information

Xuanyu Tao and Yabo Li contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, X., Li, Y., Huang, H. et al. Desulfovibrio vulgaris Hildenborough prefers lactate over hydrogen as electron donor. Ann Microbiol 64, 451–457 (2014). https://doi.org/10.1007/s13213-013-0675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0675-0

Keywords