Skip to main content

Effect of Bisphenol A on human health and its degradation by microorganisms: a review

Abstract

Bisphenol A (BPA), is an industrially important compound and is widely used for the production of polycarbonates and other plastics. Over the past few years, there have been many issues raised all over the world on the use of BPA. BPA is known to possess estrogenic activities; hence, it mimics the role of estrogen once it enters living systems. Thus, it has been placed in the category of compounds called endocrine disruptors. It can cause damage to reproductive organs, thyroid gland, and brain tissues at developmental stages, and most recently it has also been linked to cancer development in humans. Here, in this review, we aim to summarize the various effects of BPA on humans and animals, and at the same time we wish to throw some light on the emerging field of biodegradation of BPA in the natural environment. A few studies conducted recently have tried to isolate BPA-degrading microorganisms from various sites, like water bodies receiving wastes from industries, landfills, etc. In the present scenario, with huge controversies on the use of BPA, we emphasize on bridging the gap between studies, aiming at finding the damage caused by BPA, and the studies which aim at the safe removal of BPA from the environment, with the help of naturally occurring microbes. Once this gap is filled, we will be able to find a way which will allow the use of BPA in manufacturing plastics, without its accumulation in the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adriani W, Seta DD, Dessi-Fulgheri F, Farabollini F, Laviola G (2003) Altered profiles of spontaneous novelty seeking impulsive behavior and response to Damphetamine in rats perinatally exposed to BPA. Environ Health Perspect 111:395–401

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Akingbemi BT, Sottas CM (2004) Inhibition of testicular steroidogenesis by the xenoestrogen BPA is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592–603

    CAS  PubMed  Article  Google Scholar 

  3. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B (2005) Low doses of BPA and diethylstilbestrol impair Ca2+ signals in pancreatic α-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect 113:969–977

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Bautista-Toledo I, Ferro-García MA, Rivera-Utrilla J, Moreno-Castilla C, Vegas Fernández FJ (2005) BPA removal from water by activated carbon effects of carbon characteristics and solution chemistry. Environ Sci Technol 39:6246–6250

    CAS  PubMed  Article  Google Scholar 

  5. Ben-Jonathan N, Steinmetz R (1998) Xenoestrogens: the emerging story of BPA. Trends Endocrinol Metab 9:124–128

    CAS  PubMed  Article  Google Scholar 

  6. Bonefeld-Jorgensen EC, Long M (2007) Endocrine-disrupting potential of BPA, BPA dimethacrylate 4-n-nonylphenol and 4-n-octylphenol invitro: new data and a brief review. Environ Health Perspect 115:69–76

    PubMed Central  PubMed  Article  Google Scholar 

  7. Can A, Semiz O, Cinar O (2005) Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Human Reprod 11:389–396

    CAS  Article  Google Scholar 

  8. Chapin RE, Adams J, Boekelheide K, Gray LE, Hayward SW, Lees PS, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, Vandenbergh JG, Woskie SR (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of Bisphenol A. Birth Defects Res B 83:157–395

    CAS  Article  Google Scholar 

  9. Clark JH, Schrader WT, O’Malley BW (1992) Mechanisms of action of steroid hormones. In: Wilson J, Foster DW (eds) Textbook of Endocrinology. Saunders, Philadelphia, pp 35–90

    Google Scholar 

  10. Dessi-Fulgheri F, Porrini S, Farabollini F (2002) Effects of perinatal exposure to BPA on play behavior of female and male juvenile rats. Environ Health Perspect 110:403–407

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Domoradzki JY, Thornton CM, Pottenger LH, Hansen SC, Card TL, Markham DA, Dryzga MD, Shiotsuka RN, Waechter JM Jr (2004) Age and dose depen dency of the pharmacokinetics and metabolism of Bisphenol A in neonatal Sprague-Dawley rats following oral administration. Toxicol Sci 77:230–242

    CAS  PubMed  Article  Google Scholar 

  12. Farabollini F, Porrini S, Della Seta D, Bianchi F, Dessi-Fulgheri F (2002) Effects of perinatal exposure to BPA on sociosexual behavior of female and male rats. Environ Health Perspect 110:409–414

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of BPA by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284:704–706

    CAS  PubMed  Article  Google Scholar 

  14. Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of BPA by the lignin-degrading enzyme manganese peroxidase produced by the white-rot bacidiomycete Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962

    CAS  PubMed  Article  Google Scholar 

  15. Ho SM, Tang WY, Belmonte de Frausto J (2006) Developmental exposure to estradiol and BPA increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS (1999) Environmental toxins: exposure to BPA advances puberty. Nature 401:763–764

    CAS  PubMed  Article  Google Scholar 

  17. Ikezuki Y, Tsutsumi O (2002) Determination of BPA concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841

    CAS  PubMed  Article  Google Scholar 

  18. Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76:569–581

    CAS  PubMed  Article  Google Scholar 

  19. Kang JH, Kondo F (2002) BPA degradation by bacteria isolated from River Water. Arch Environ Contam Toxicol 43:265–269

    CAS  PubMed  Article  Google Scholar 

  20. Kim JY, Han EH, Kim HG, Oh KN, Kim SK, Leea KY, Jeong HG (2010) BPA-induced aromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells. Toxicol Lett 193:200–208

    CAS  PubMed  Article  Google Scholar 

  21. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) BPA: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    CAS  PubMed  Google Scholar 

  22. Lee HJ, Chattopadhyay S (2003) Antiandrogenic effects of BPA and nonylphenol on the function of androgen receptor. Toxicol Sci 75:40–46

    CAS  PubMed  Article  Google Scholar 

  23. Li Y, Song T, Cai Y, Zhou J, Song X, Zhao X, Wu X (2009) BPA exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci 108:427–436

    CAS  PubMed  Article  Google Scholar 

  24. Liu X, Matsushima A (2007) Receptor binding characteristics of the endocrine disruptor BPA for the human nuclear estrogen-related receptor gamma. FEBS J 274:6340–6351

    CAS  PubMed  Article  Google Scholar 

  25. Lobos JH, Leib TK, Su TM (1992) Biodegradation of BPA and other bisphenols by a Gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Matsumoto J, Yokota H, Yuasa A (2002) Developmental increases in rat hepatic microsomal UDP-glucuronosyltransferase activities toward xenoestrogens and decreases during preg nancy. Environ Health Perspect 110:193–196

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Moriyama K, Tagami T (2002) Thyroid hormone action is disrupted by BPA as an antagonist. J Clin Endocrinol Metab 87:5185–5190

    CAS  PubMed  Article  Google Scholar 

  28. Murdoch FE, Gorski J (1991) The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 78:103–108

    Article  Google Scholar 

  29. Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S (2006) Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of BPA. J Neurosci Res 84:1197–1205

    CAS  PubMed  Article  Google Scholar 

  30. Nakamura K, Itoh K, Sugimoto T, Fushiki S (2007) Prenatal exposure to BPA affects adult murine neocortical structure. Neurosci Lett 420:100–105

    CAS  PubMed  Article  Google Scholar 

  31. Noguchi S, Nakatsuka M, Asagiri K, Habara T, Takata M, Konish H (2002) BPA stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells. Toxicol Lett 135:95–101

    CAS  PubMed  Article  Google Scholar 

  32. Okada H, Tokunaga T (2008) Direct evidence revealing structural elements essential for the high binding ability of BPA to human estrogen-related receptor-gamma. Environ Health Perspect 116:32–38

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Oshiman K, Tsutsumi Y, Nishida T, Matsumura Y (2007) Isolation and characterization of a novel bacterium Sphingomonas bisphenolicum strain AO1 that degrades BPA. Biodegradation 18:247–255

    CAS  PubMed  Article  Google Scholar 

  34. Patisaul HB, Fortino AE, Polston EK (2006) Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol 28:111–118

    CAS  PubMed  Article  Google Scholar 

  35. Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes, 3rd edn. CRC, Boca Raton, pp 1–35

    Google Scholar 

  36. Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2007) Biodegradation of BPA and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Biosciences Biotech Biochem 71:51–57

    Google Scholar 

  37. Sakaue M, Ohaskao S, Ishimura R, Kurosawa S, Kurohmaru M, Hayashi Y, Aoki Y, Yonemoto J, Tohyama C (2001) BPA affects spermatogenesis in adult rats even at very low dose. J Occup Health 43:185–190

    CAS  Article  Google Scholar 

  38. Sasaki M, Maki J, Oshiman K, Matsumura M, Tsuchido T (2005) Biodegradation of BPA by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459

    Google Scholar 

  39. Shin EH, Choi HT, Song HG (2007) Biodegradation of Endocrine-disrupting BPA by White Rot Fungus Irpex lacteus. J Microbiol Biotechnol 17:1147–1151

    CAS  PubMed  Google Scholar 

  40. Simpson ER, Clyne C (2002) Aromatase—a brief overview. Annu Rev Physiol 64:93–127

    CAS  PubMed  Article  Google Scholar 

  41. Sm L, Koo BW, Choi JW, Choi DH, An BS, Jeung EB, Choi IG (2005) Degradation of BPA by white rot fungi Stereum irsutum and Heterobasidium insulare and reduction of its estrogenic activity. Biol Pharm Bull 28:201–207

    Google Scholar 

  42. Sohoni P, Sumpter JP (1998) Several environmental estrogens are also antiandrogens. J Endocrinol 158:327–339

    CAS  PubMed  Article  Google Scholar 

  43. Staples C, Dorn P, Klecka G, O’Block S, Harris L (1998) A review of the environmental fate effects and exposures of BPA. Chemosphere 36:2149–2173

    CAS  PubMed  Article  Google Scholar 

  44. Suiko M, Sakakibara Y, Liu MC (2000) Sulfation of environmental estrogen like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun 267:80–84

    CAS  PubMed  Article  Google Scholar 

  45. Susiarjo M, Hassold TJ, Freeman E, Hunt PA (2007) BPA exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 3(1):e5

    PubMed Central  PubMed  Article  Google Scholar 

  46. Takayanagi S, Tokunaga T (2006) Endocrine disruptor BPA strongly bind to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 167:95–105

    CAS  PubMed  Article  Google Scholar 

  47. Taylor JA, Welshons WV, vom Saal FS (2008) No effect of route of exposure (oral, subcutaneous injection) on plasma BPA throughout 24 h after administration in neonatal female mice. Reprod Toxicol 25:169–176

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179

    CAS  PubMed  Article  Google Scholar 

  49. Toyama T, Sato Y, Inoue D, Sei K, Young-Cheol C, Shintaro K, Michihiko I (2009) Biodegradation of BPA and BPF in the rhizosphere sediment of Phragmites australis. J Biosci Bioeng 108:147–150

    CAS  PubMed  Article  Google Scholar 

  50. Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of BPA and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    CAS  PubMed  Article  Google Scholar 

  51. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to BPA (BPA). Reprod Toxicol 24:139–177

    CAS  PubMed  Article  Google Scholar 

  52. Varayoud J, Ramos JG, Bosquiazzo VL, Lower M, Muñoz-de-Toro M, Luque EH (2011) Neonatal exposure to BPA alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology 152:1101–1111

    CAS  PubMed  Article  Google Scholar 

  53. vom Saal FS, Timms BG, Montano MM (1997) Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci USA 94:2056–2061

    CAS  PubMed  Article  Google Scholar 

  54. Watson CS, Bulayeva NN (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposuresIII Endocrine mechanisms mediating effects of BPA at levels of human exposure. Endocrinology 147:56–69

    Article  Google Scholar 

  56. Wen C, Yuichi H, Masako S, Michihiko S, Nakahido K, Cakira H (2005) Biodegradation of BPA by fungi. Appl Biochem Biotechnol 120:0273–2289

    Google Scholar 

  57. Xu LC, Sun H (2005) Evaluation of androgen receptor transcriptional activities of BPA octylphenol and nonylphenol in vitro. Toxicology 216:197–203

    CAS  PubMed  Article  Google Scholar 

  58. Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G, Sata F, Kishi R, Fujimoto S (2002) Maternal serum and amniotic fluid BPA concentrations in the early second trimester. Reprod Toxicol 16:735–739

    CAS  PubMed  Article  Google Scholar 

  59. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) BPA in hazardous waste landfill leachates. Chemosphere 42:415–418

    CAS  PubMed  Article  Google Scholar 

  60. Yamanaka H, MoriyoshI K, Ohmoto T, Ohe T, Sakai K (2006) Degradation of BPA by Bacillus pumilus isolated from Kimchi a traditionally fermented food. Appl Biochem Biotechnol 136:39–51

    Google Scholar 

  61. Yamanaka H, MoriyoshI K, Ohmoto T, Ohe T, Sakai K (2008) Efficient microbial degradation of Bisphenol A in the Presence of Activated Carbon. J Biosci Bioeng 105:157–160

    CAS  PubMed  Article  Google Scholar 

  62. Ye X, Pierik FH, Angerer J, Meltzer HM, Jaddoe VW, Tiemeier H (2009) Levels of metabolites of organophosphate pesticides phthalates and BPA in pooled urine specimens from pregnant women participating in the Norwegian mother and child cohort study (MoBa). Int J Hyg Environ Health 212:481–491

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro increases serum thyroxine and alters RC3/Neurogranin expression in the developing rat brain. Endocrinology 146:607–612

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge University Grant Commission, New Delhi, and Department of Science and Technology (DST), New Delhi, for providing a fellowship to Shikha Chouhan, Council of Scientific and Industrial Research (CSIR), New Delhi, for providing a fellowship to Satyndra Kumar Yadav, and Indian Council of Medical Research, New Delhi, for providing a fellowship to Jay Prakash.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Surya P. Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chouhan, S., Yadav, S.K., Prakash, J. et al. Effect of Bisphenol A on human health and its degradation by microorganisms: a review. Ann Microbiol 64, 13–21 (2014). https://doi.org/10.1007/s13213-013-0649-2

Download citation

Keywords

  • Bisphenol A
  • Endocrine disruptor
  • Microbes
  • Biodegradation