Skip to main content
Log in

Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A laboratory incubation study conducted to assess the temporal variation of CH4 oxidation during soil reduction processes in a flooded soil ecosystem. A classical sequence of microbial terminal electron accepting process observed following NO3 reduction, Fe3+ reduction, SO4 2− reduction and CH4 production in flooded soil incubated under initial aerobic and helium-flushed anaerobic conditions. CH4 oxidation in the slurries was influenced by microbial redox process during slurry reduction. Under aerobic headspace condition, CH4 oxidation rate (k) was stimulated by 29 % during 5 days (NO3 reduction) and 32 % during both 10 days (Fe3+) and 20 days (early SO4 2− reduction) over unreduced slurry. CH4 oxidation was inhibited at the later methanogenic period. Contrastingly, CH4 oxidation activity in anaerobic incubated slurries was characterized with prolonged lag phase and lower CH4 oxidation. Higher CH4 oxidation rate in aerobically incubated flooded soil was related to high abundance of methanotrophs (r = 0.994, p < 0.01) and ammonium oxidizers population (r = 0.184, p < 0.05). Effect of electron donors NH4 +, Fe2+, S2− on CH4 oxidation assayed to define the interaction between reduced inorganic species and methane oxidation. The electron donors stimulated CH4 oxidation as well as increased the abundance of methanotrophic microbial population except S2− which inhibited the methanotrophic activity by affecting methane oxidizing bacterial population. Our result confirmed the complex interaction between methane-oxidizing microbial groups and redox species during sequential reduction processes of a flooded soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adamsen APS, King GM (1993) Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol 59:485–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adhya TK, Patnaik P, Rao VR, Sethunathan N (1996) Nitrification of ammonium in different components of a flooded rice soil system. Biol Fertil Soils 23:321–326

    Article  CAS  Google Scholar 

  • Adhya TK, Bharati K, Mohanty SR et al (2000) Methane emission from rice fields at Cuttack, India. Nutr Cycl Agroecosyst 58:95–105

    Article  CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Mol Biol Rev 53:68–84

    CAS  Google Scholar 

  • Bharati K, Mohanty SR, Singh DP et al (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric Ecosyst Environ 79:73–83

    Article  CAS  Google Scholar 

  • Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124

    Article  CAS  PubMed  Google Scholar 

  • Börjesson GC, Svensson J, Bo H (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30:369

    Article  PubMed  Google Scholar 

  • Bosse U, Frenzel P (1997) Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (oryza sativa). Appl Environ Microbiol 63:1199–1207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soils 17:263–268

    Article  CAS  Google Scholar 

  • Carucci A, Kühni M, Brun R et al (1999) Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed. Water Sci Technol 39:75–85

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM et al (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 9:1–10

    Article  CAS  Google Scholar 

  • Chow AT, Tanji KK, Scardaci SC, Gao S (2002) Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci Soc Am J 66:805–817

    Article  Google Scholar 

  • Coleman ML (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Mar Geol 113:127–140

    Article  CAS  Google Scholar 

  • Conrad R, Routhfuss F (1991) Methane oxidation in soil surface layer of a flooded rice field and the effect of ammoinum. Biol Fertil Soils 12:28–32

    Article  CAS  Google Scholar 

  • Czepiel PM, Crill PM, Harriss RC (1995) Environmental factors influencing the variability of methane oxidation in temperate zone soils. J Geophys Res 100:9359–9364

    Article  CAS  Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45:53–71

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi:10.1038/nature04514

    Article  CAS  PubMed  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR et al (2000) General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cycles 14:999–1019

    Article  Google Scholar 

  • Delaune RD, Patrick WH (1972) Characterization of the oxidized and reduced zones in flooded soil. Soil Sci Soc Am J 36:573–576

    Article  Google Scholar 

  • Dunfield PF, Knowles R (1995) Effect of nitrogen fertilizers and moisture content on CH4 and N2O fluxes in a humisol: measurements in the field and intact soil cores. Biogeochemistry 29:199–222

    Article  CAS  Google Scholar 

  • Elliott P, Ragusa S, Catcheside D (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res 32:3724–3730

    Article  CAS  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89

    Article  CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML et al (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Graham DW, Korich DG, LeBlanc RP et al (1992) Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30:115–141

    Article  CAS  Google Scholar 

  • Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate reducing bacteria. Crit Rev Environ Sci Technol 26:155–187

    Article  CAS  Google Scholar 

  • Hardy KR, King GM (2001) Enrichment of high-affinity CO oxidizers in Maine forest soil. Appl Environ Microbiol 67:3671–3676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation, and emission of methane in rice paddies. FEMS Microbiol Ecol 31:343–351

    Article  CAS  Google Scholar 

  • Hütsch BW, Powlson DS (1994) Methane oxidation in soil as affected by land use, pH, and N fertilization. Soil Biol Biochem 26:1613–1622

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice- Hall, Inc, Englewood, Cliffs, New Jersey

    Google Scholar 

  • Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623–625

    Article  CAS  Google Scholar 

  • Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the atlantic lowlands of coasta rica. Global Biogeochem Cycles 8:399–409

    Article  CAS  Google Scholar 

  • Kightley D, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61:592–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumaraswamy SR, Sethunathan B (2001) Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J Environ Qual 30:2195

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC et al (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli RL (1995) The regulation of methane oxidation in soil. Annu Rev Microbiol 49:581–605

    Article  CAS  PubMed  Google Scholar 

  • McCartney DM, Oleszkiewicz JA (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res 25:203–209

    Article  CAS  Google Scholar 

  • Miura Y, Watanabe A, Murase J, Kimura M (1992) Methane production and its fate in paddy fields II. Oxidation of methane and its coupled ferric oxide reduction in sub soil. Soil Sci Plant Nutr 38:673–679

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PL, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31

    Article  CAS  PubMed  Google Scholar 

  • Moore JN, Ficklin WH, Johns C (1988) Partitioning of arsenic and metals in reducing sulfidic sediments. Environ Sci Technol 22:432–437

    Article  CAS  Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW et al (1996) CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem Cycles 10:387–399

    Article  CAS  Google Scholar 

  • Murase J, Kimura M (1996) Methane production and its fate in paddy fields.9. Methane flux distribution and decomposition of methane in the subsoil during the growth period of rice plants. Soil Sci Plant Nutr 42:187–190

    Article  CAS  Google Scholar 

  • Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick WH, Engler RM (1974) Nitrate removal from floodwater overlying flooded soils and sediments. J Environ Qual 3:409–413

    Google Scholar 

  • Paul JW, Beauchamp EG, Trevors JT (1989) Acetate, propionate, butyrate, glucose, and sucrose as carbon sources for denitrifying bacteria in soil. Can J Microbiol 35:754–759

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Ratering S, Schnell S (2000) Localization of iron-reducing activity in paddy soilby profile studies. Biogeochemistry 48:341–365

    Article  CAS  Google Scholar 

  • Reeburg WS (1993) The role of methanotrophy in the global methane budget. In: Murrell JC, and Kelly JP (eds) Microbial growth on C-1 compounds. Intercept Ltd United Kingdom, pp 1–14

  • Reeburgh WS (2003) Global methane biogeochemistry. Treatise geochem 4:65–89

    Google Scholar 

  • Rittle KA, Drever JI, Colberg PJS (1995) Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol J 13:1–11

    Article  CAS  Google Scholar 

  • Rosenzweig AC (2008) The metal centres of particulate methane mono-oxygenase. Biochem Soc Trans 36:1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roslev P, King GM (1995) Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol 61:1563–1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schimel JP, Holland EA, Valentine D (1993) Controls on methane flux from terrestrial ecosystems. ASA special publication 55:

  • Schmidt EL, Belser LW (1982) Nitrifying bacteria. Methods soil anal part 2:1027–1042

    Google Scholar 

  • Schnell S, King GM (1996) Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol 62:3203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Searle PL (1979) Measurement of adsorbed sulphate in soils—effects of varying soil: extractant ratios and methods of measurement. NZJ agric res 22:

  • Smith SM, Balasubramanian R, Rosenzweig AC (2011) Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Methods Enzymol 495:195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–316

    Article  Google Scholar 

  • Strieg RG, McConnaughey TA, Thorstenson DC et al (1992) Consumption of atmospheric methane by desert soils. Nature 357:145–147

    Article  Google Scholar 

  • Striegl RG (1993) Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere 26:715–720

    Article  CAS  Google Scholar 

  • Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems. Soil Sci Soc Am J 69:1722–1729

    Article  CAS  Google Scholar 

  • Takeguchi M, Ohashi M, Okura I (1999) Role of iron in particulate methane monooxygenase from Methylosinus trichosporium OB3b. BioMetals 12:123–129

    Article  CAS  Google Scholar 

  • Tanji KK, Gao S, Scardaci SC, Chow AT (2003) Characterizing redox status of paddy soils with incorporated rice straw. Geoderma 114:333–353

    Article  CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1983) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583

    Article  Google Scholar 

  • Torn MS, Harte J (1996) Methane consumption by montane soils: implications for positive and negative feedback with climatic change. Biogeochemistry 32:53–67

    Article  Google Scholar 

  • Van Bodegom P, Goudriaan J, Leffelaar P (2001) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeochemistry 55:145–177

    Article  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Weber KA, Churchill PF, Urrutia MM et al (2006) Anaerobic redox cycling of iron by wetland sediment microorganisms. Environ Microbiol 8:100–113

    Article  CAS  PubMed  Google Scholar 

  • Whalen SC, Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils

  • Zehnder AJ, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJ (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York, pp 1–38

    Google Scholar 

  • Zhang JZ, Millero FJ (1994) Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetry. Anal Chim Acta 284:497–504

    Article  Google Scholar 

  • Zhang G, Dong H, Jiang H et al (2009) Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. Am Mineral 94:1049–1058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Director of the Indian Institute of Soil Science for financial support of the project (P1-09/012-ISS-P34) entitled “Structural and functional diversity of soil and rhizosphere”. We thank Ms Neha Ahirwar, MSc (Biotechnology), student of Barkatullah University, Bhopal, Madhya Pradesh, for carrying out experiments and excellent technical assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Ranjan Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, S.R., Kollah, B., Sharma, V.K. et al. Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem. Ann Microbiol 64, 65–74 (2014). https://doi.org/10.1007/s13213-013-0633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0633-x

Keywords

Navigation