Abstract
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813. doi:10.1002/ejlt.200900078
Antonian E (1988) Recent advances in the purification, characterization and structure determination of lipases. Lipids 23:1101–1106. doi:10.1007/BF02535273
Azeredo LAI, Gomes PM, Sant’anna GL Jr, Castilho LR, Freire DMG (2007) Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Curr Microbiol 54:361–365. doi:10.1007/s00284-006-0425-7
Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:19–237. doi:10.1111/j.1574-6976.1997.tb00299.x
Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:357–387. doi:10.1016/j.plipres.2009.08.005
Björkling F, Godtfredsen SV, Kirk O (1991) The future impact of industrial lipases. Tibtech 9:360–363. doi:10.1016/0167-7799(91)90119-3
Bussamara R, Fuentefria AM, Oliveira ES, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Biores Technol 101:268–275. doi:10.1016/j.biortech.2008.10.063
Chang SW, Shieh CJ, Lee GC, Akoh CC, Shaw JF (2006) Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM. J Mol Microb Biotechnol 11:28–40. doi:10.1159/000092817
Corzo G, Revah S (1999) Production and characterization of the lipase from Yarrowia lipolytica 681. Bioresource Technol 70:173–180. doi:10.1016/S0960-8524(99)00024-3
Dalmau E, Montesinos JL, Lotti M, Casas C (2000) Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Technol 26:657–663. doi:10.1016/S0141-0229(00)00156-3
Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol. doi:10.1155/2009/562943
Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H (2011) High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate. New Biotechnol 28:756–760. doi:10.1016/j.nbt.2011.02.002
Elibol M, Ozer D (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem 36:325–329. doi:10.1016/S0032-9592(00)00226-0
Fatima Y, Kansal H, Soni P, Banerjee UC (2007) Enantioselective reduction of aryl ketones using immobilized cells of Candida viswanathii. Process Biochem 42:1412–1418. doi:10.1016/j.procbio.2007.07.010
Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J App Microbiol 96:742–749. doi:10.1111/j.1365-2672.2004.02190.x
Fickers P, Destain J, Thornart P (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543. doi:10.1016/j.femsyr.2004.09.004
Gulati R, Isar J, Kumar V, Prasad AK, Parmar VS, Saxena RK (2005) Production of a novel alkaline lipase by Fusarium globulosum using neem oil, and its applications. Pure App Chem 77:251–262. doi:10.1351/pac200577010251
Gutarra MLE, Mateus GG, Castilho LR, Freire DMG (2007) Inoculum strategies for Penicillium simplicissimum lipase production by solid-state fermentation using a residue from Babassu oil industry. J Chem Technol Biotechnol 82:313–318. doi:10.1002/jctb.1674
Hankin L, Anagnostakis SG (1975) The use of solid media for detection of enzyme production by fungi. Mycology 67:597–607
Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. App Biochem Biotechnol 118:155–170. doi:10.1385/ABAB:118:1-3:155
Kalo P, Kemppinem A (2003) Triglycerides/structures and properties. Encyclopedia of Food Sciences and Nutrition. Elsevier 5857-5868
Kamzolova SV, Morgunov IG, Aurich A (2005) Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technol Biotechnol 43:113–122
Kok RG, Nudel CB, Gonzalez RH, Nugteren-Roodzant IM, Hellingwerf KJ (1996) Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipa expression and degradation of LipA. J Bacteriol 178:6025–6035
Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study. Elsevier, San Diego
Lakshmi BB, Kangueane P, Abraham B, Pennathur G (1999) Effect of vegetable oils in the secretion of lipase from Candida rugosa (DSM 2031). Lett Appl Microbiol 29:66–70. doi:10.1046/j.1365-2672.1999.00578.x
Leal MCMR (2000) Utilização de enzimas hidrolíticas no tratamento de resíduos da indústria de laticínios. Dissertation, Universidade Federal do Rio de Janeiro
Li Q, Yan Y (2010) Production of biodiesel catalysed by immobilization Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. App Energy 87:3148–3154. doi:10.1016/j.apenergy.2010.02.032
Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 265-275
Mafakher L, Mirbagheri M, Darvishi F, Nahvi I, Zarkesh-Esfahani H, Emtiazi G (2010) Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater. New Biotechnol 27:337–341. doi:10.1016/j.nbt.2010.04.006
Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721. doi:10.1016/S0032-9592(02)00194-2
Messias JM, Costa BZ, Lima VMG, Dekker RFH, Rezende MI, Krieger N, Barbosa AM (2009) Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme Microb Techno 45:426–431. doi:10.1016/j.enzmictec.2009.08.013
Obradors N, Montesinos JL, Valero F, Lafuente FJ, Sola C (1993) Effects of different fatty acids in lipase production by Candida rugosa. Biotechnol Let 15:357–360. doi:10.1007/BF00128276
Ohnishi K, Yoshida Y, Sekiguchi J (1994) Lipase production of Aspergillus oryzae. J Fermentation Bioeng 77:490–495. doi:10.1016/0922-338X(94)90116-3
Palomo JM, Ortiz C, Fernández-Lorente G, Fuente M, Guisán JM, Fernández-Lafuente R (2005) Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol 36:447–454. doi:10.1016/j.enzmictec.2004.09.013
Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654. doi:10.1002/ejlt.200900197
Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051. doi:10.1002/ejlt.201100014
Papanikolaou S, Chevalot I, Galiotou-Panayotu M, Komatis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single cell protein and lipase production by Yarrowia lipolytica. Electronic J Biotechnol 10. doi:10.2225/vol10-issue3-fulltext-8
Pogori N, Ahmad C, Yan X, Dong W (2008) Production and biochemical characterization of an extracellular lipase from Rhizopus chinesis CCTCC M201021. Biotechnology 7:710–717
Rodriguez JA, Mateos JC, Nungaray J, Gonzalez V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269. doi:10.1016/j.procbio.2006.05.017
Ruegger MJS, Tauk-Tornisielo SM (2004) Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Rev Bras Bot 27:205–211
Salimon J, Noor DAM, Nazrizawati AT (2010) Fatty composition and physiological properties of Malaysian castor been Ricinus communis L. seed oil. Sains Malaysians 39:61–764. doi:10.1021/jf902726p
Saravanan AN, Suchitra N, Dhandayuthapani K (2007) Role of saturated fatty acids in lipase production using Pseudomonas aeruginosa. J Food Biochem 31:748–756. doi:10.1111/j.1745-4514.2007.00140.x
Sarda L, Desnuelle P (1958) Action de la lipase pancreátique sur les esters em émulsion. Biochim Biophys Acta 30:513–521. doi:10.1016/0006-3002(58)90097-0
Seitz EW (1974) Industrial application of microbial lipases: a review. J Am Oil Chem Soc 51:12–16. doi:10.1007/BF02545206
Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechn Adv 19:627–662. doi:10.1016/S0734-9750(01)00086-6
Sheng J, Wang F, Wang HY, Sun M (2011) Cloning, characterization and expression of a novel lipase gene from marine psychrotrophic Yarrowia lipolytica. Ann Microbiol. doi:10.1007/s13213-011-0348-9
Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichium candidum lipase by long-chain fatty acids. J Fermentation Bioeng 74:77–80
Simões MLG, Tauk-Tornisielo SM (2006) Comparação da técnica tradicional e do método turbidimétrico automático no cultivo em diferentes fortes de carbono de fungos filamentosos isolados de área de caatinga. Holos Env 5:94–103
Soares J Jr, Mariano AP, Angelis DF (2008) Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr J Biotechn 8:2774–2778. doi:10.5897/AJB09.238
Takaç S, Unlu AE, Erden B (2010) Oxygen transfer strategy modulates the production of lipase and esterase enzymes by Candida rugosa. J Mol Cat B-Enz 64:150–154. doi:10.1016/j.molcatb.2009.07.005
Tan T, Zhang M, Xu J, Zhang J (2004) Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem 39:1495–1502. doi:10.1016/S0032-9592(03)00296-6
Teng Y, Xu Y, Wang D (2009) Production and regulation of different lipase activities from Rhizopus chinensis in submerged fermentations by lipids. J Mol Cat B-Enz 57:292–298. doi:10.1016/j.molcatb.2008.10.003
Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196. doi:10.1007/s11947-009-0202-2
Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electronic J Biotechnol 9. doi:10.2225/vol9-issue1-fulltext-9
Vargas GDLP, Treichel H, Oliveira D, Beneti SC, Freire DMG, Di Luccio M (2008) Optimization of lipase production by Penicillium simplicissimun in soybean meal. J Chem Technol Biotechnol 83:47–54. doi:10.1002/jctb.1776
Vogel HJ (1956) A convenient growth medium for Neurospora crassa (medium N). Microbiol Gen Bull 13:42–43
Wang L, Chi Z, Wang X, Liu Z, Li J (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol 57:495–501. doi:10.1007/BF03175345
Yang J, Koga Y, Nakano H, Yamane T (2002) Modifying the chaing-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Eng 15:147–152. doi:10.1093/protein/15.2.147
Acknowledgments
The authors would like to thank the National Council of Technological and Scientific Development (CNPq) for financial support and for the scholarship awarded to the first author; Dr. Paula Benevides de Morais for providing the yeasts of Cerrado environment; Dr. Dejanira de Franceschi de Angelis for providing the Candida viswanathii strain for this study; and Dr. César R. F. Terrasan for his suggestions on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Almeida, A.F., Taulk-Tornisielo, S.M. & Carmona, E.C. Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Ann Microbiol 63, 1225–1234 (2013). https://doi.org/10.1007/s13213-012-0580-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13213-012-0580-y

