Skip to main content
Log in

Molecular defense response of mycorrhizal bean plants infected with Rhizoctonia solani

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A time course study was conducted to investigate disease development and molecular defense response in common bean (Phaseolus vulgaris L.) plants colonized by a mixture of five arbuscular mycorrhizal (AM) fungi, namely, Glomus mosseae, G. intraradices, G. clarum, Gigaspora gigantea, and Gigaspora margarita, and post-infected with the soil-borne pathogen Rhizoctonia solani. Results showed that pre-colonization of bean plants by AM fungi significantly reduced disease severity and disease incidence. DNA fingerprinting using the differential display technique revealed a genetic polymorphism (86.8 %) in bean plants that resulted from the colonization by AM fungi. Two genetic mechanisms were recorded: (1) switching on of new genes and (2) induction of other active genes, including the defense genes chitinase and β-1,3-glucanase, to a highly expressed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Fattah GM, El-Haddad SA, Hafez EE, Rashad YM (2011) Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol Res 166(4):268–281

    Article  PubMed  CAS  Google Scholar 

  • Aly MH, Manal YH (2009) Vesicular-arbuscular mycorrhiza and Trichoderma virdi as deterrents against soil-borne root rot disease of sugar beet. Sugar Tech 11(4):387–391

    Article  Google Scholar 

  • Bishop JG, Ripoll DR, Bashir S, Damasceno CMB, Seeds JD, Rose JKC (2005) Selection on glycine β-1,3-endoglucanase genes differentially inhibited by a Phytophthora glucanase inhibitor protein. Genetics 169:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Blee KA, Anderson AJ (1996) Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck Smith. Plant Physiol 110:675–688

    PubMed  CAS  Google Scholar 

  • Buttery BR, Park SJ, Findlay WJ (1987) Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can J Plant Sci 67:425–432

    Article  Google Scholar 

  • Carling DE, Pope EJ, Brainard KA, Carter DA (1999) Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 89:942–946

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Higgins JA, Feldlaufer MF (2005) Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.). Appl Environ Microb 71:436–441

    Article  CAS  Google Scholar 

  • Ciavatta ML, Lopez-Gresa MP, Carella A, Manzo E, Nicoletti R (2006) Antagonism towards Rhizoctonia solani and production of a brevioxime-related compound by Penicillium sizovae. J Plant Pathol 88:S37

    Google Scholar 

  • CoStat (2005) Cohort Software Monterey

  • Cota IE, Troncaso-Rojas R, Sotelo-Mundo R, Sanchez-Estrada A, Tiznado-Hernandez ME (2007) Chitinase and β-1, 3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci Hortic 112:42–50

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–24

    Article  Google Scholar 

  • El-Haddad SA, Abd El-Megid MS, Shalaby OY (2004) Controlling onion white rot by using Egyptian formulated endo-mycorrhiza (Multi-VAM). Ann Agric Sci 49:733–745

    Google Scholar 

  • El-Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid and salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia Solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Garmendia I, Aguirreolea J, Goicoechea N (2006) Defense-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl 51:293–310

    Article  CAS  Google Scholar 

  • Gooday GW (1999) Aggressive and defensive roles for chitinases. In: Jolles P, Muzzarelli RAA (eds) Chitin and chitinases. Birkhäuser, Basel, pp 157–170

    Chapter  Google Scholar 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112

    Article  Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925–932

    Article  PubMed  CAS  Google Scholar 

  • Guillon C, St-Arnaud M, Hamel C, Jabaji-Hare S (2002) Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can J Bot 80(3):305–315

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  PubMed  CAS  Google Scholar 

  • Kronland WC, Stanghellini ME (1988) Clean slide technique for the observation of anastomosis and nuclear condition of Rhizoctonia solani. Phytopathology 78:820–822

    Google Scholar 

  • Lambais MR, Mehdy MC (1998) Spatial distribution of chitinases and β-1-3-glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions. New Phytol 140:33–42

    Article  CAS  Google Scholar 

  • Mohr U, Lange J, Boller T, Wiemken A, Vögeli-Lange R (1998) Plant defense genes are induced in the pathogenic interaction between bean roots and Fusarium solani, but not in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 138:589–598

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of colonization. Trans Br Mycol Soc 55:157–160

    Article  Google Scholar 

  • Pozo MJ, Dumas-Gaudot E, Barea JM (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Shalini S, Kotasthane AS (2007) Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Electro J Environ Agric Food Chem 6:2272–2281

    Google Scholar 

  • Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil born pathogens. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, Dordrecht, pp 184–189

    Google Scholar 

  • Smith MV, Miller CR, Kohn M, Walker NJ, Portier CJ (2007) Absolute estimation of initial concentrations of amplicon in a real-time RT-PCR process. BMC Bioinformatics 8:409

    Article  PubMed  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. American Phytopathological Society Press, Saint Paul

    Google Scholar 

  • SPSS (2004) SPSS® Base 13.0 User’s Guide. SPSS, Chicago

  • Tarantino P, Caiazzo R, Carella A, Lahoz E (2007) Control of Rhizoctonia solani in a tobacco-float system using low rates of iprodione- and iprodione-resistant strains of Gliocladium roseum. Crop Protect 26:1298–1302

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Publ, Paris, pp 217–221

    Google Scholar 

  • Tu CC, Hsieh TF, Chang YC (1996) Vegetable diseases incited by Rhizoctonia spp. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht,, pp 369–377

    Google Scholar 

  • Zeng RS (2006) Disease resistance in plants through mycorrhizal fungi induced allelochemicals. In: Inderjit KG, Mukerji (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer SBM, Dordrecht, pp 181–192

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work. Our deep gratitude is extended to Dr. Khalid Ghoneem (Plant Pathology Research Institute, Agricultural Research Center) for his sincere help in the fungal identification. Many thanks to all those who have helped us in the Plant Molecular Pathology Lab., Mubarak City for Scientific Research, especially Ms. Ghada Ali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafez, E.E., Abdel-Fattah, G.M., El-Haddad, S.A. et al. Molecular defense response of mycorrhizal bean plants infected with Rhizoctonia solani . Ann Microbiol 63, 1195–1203 (2013). https://doi.org/10.1007/s13213-012-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0578-5

Keywords

Navigation