Skip to main content

Advertisement

Log in

Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Microbial extracts continue to be a productive source of new molecules with biotechnological importance. Fungi of the genus Penicillium are known to produce biologically active secondary metabolites. The goal of this work is verify the production of antimicrobial metabolites by Penicillium chrysogenum IFL1 using agro-industrial residues. P. chrysogenum IFL1 produced active metabolites growing on the agro-industrial residues, grape waste and cheese whey. The 7-day cultures showed antimicrobial activities against bacteria, fungi and amoebae. The filtrate of the cheese whey culture inhibited the growth of the bacteria Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa, the fungus Fusarium oxysporum and the amoeba Acanthamoeba polyphaga. Due to the greater antimicrobial activity of the cheese whey culture, a footprinting profile was carried out using the ESI-MS and ESI-MS/MS techniques. The presence of penicillin G and other metabolites that have antimicrobial activity such as penicillin V and rugulosin can be suggested. P. chrysogenum IFL1 was able to produce a wide variety of antimicrobial compounds on agro-industrial residues, which makes the process ecologically friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barkai-Golan R (2008) Penicillium mycotoxins. In: Barkai-Golan R, Paster N (eds) Mycotoxins in fruits and vegetables. Elsevier, New York, pp 153–183

    Chapter  Google Scholar 

  • Barrios-Gonzalez J, Tomasini A, Viniegra-Gonzalez G, Lopez L (1988) Penicillin production by solid-state fermentation. Biotechnol Lett 10:793–798

    Article  CAS  Google Scholar 

  • Becker-Ritt AB, Martinelli AHS, Mitidieri S, Feder V, Wassermann GE, Santi L, Vainstein MH, Oliveira JTA, Fiuza LM, Pasquali G, Carlini CR (2007) Antifungal activity of plant and bacterial ureases. Toxicon 50:971–983

    Article  PubMed  CAS  Google Scholar 

  • Benitez LB, Caumo K, Brandelli A, Rott MB (2010) Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga. Parasitol Res 108:687–691

    Article  PubMed  Google Scholar 

  • Bi P, Li D, Dong H (2009) A novel technique for the separation and concentration of penicillin G from fermentation broth: aqueous two-phase flotation. Sep Purif Technol 69:205–209

    Article  CAS  Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39:214–228

    Article  PubMed  CAS  Google Scholar 

  • Boonman N, Wiyakrutta S, Sriubolmas N, Chusattayanond AD (2008) Acanthamoebicidal activity of Fusarium sp. Tlau 3, and endophytic fungus from Thunbergia laurifolia Lindl. Parasitol Res 103:1083–1090

    Article  PubMed  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Chomicz L, Padzik M, Graczyk Z, Starosciak B, Graczyk TK, Naprawska A, Oledzka G, Szostakowska B (2010) Acanthamoeba castellanii: In vitro effects of selected biological, physical and chemical factors. Exp Parasitol 126:103–105

    Article  PubMed  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  PubMed  CAS  Google Scholar 

  • Derda M, Hadas E, Thiem B (2009) Plant extracts as natural amoebicidal agents. Parasitol Res 104:705–708

    Article  PubMed  Google Scholar 

  • Edel V, Steinberg C, Gautheron N, Recorbet G, Alabouvette C (2001) Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiol Ecol 36:61–71

    Article  PubMed  CAS  Google Scholar 

  • El-Enshasy HA (2007) Filamentous fungal cultures - Process characteristics, products, and applications. In: Yang ST (ed) Bioprocessing for value-added products from renewable resources. Elsevier, New York, pp 225–261

    Chapter  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Goodacre R, Trew S, Wrigley-Jones C, Saunders G, Neal MJ, Porter N, Kell DB (1995) Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chrysogenum fermentations for the overproduction of penicillins. Anal Chim Acta 313:25–43

    Article  CAS  Google Scholar 

  • Goze I, Alim A, Dag S, Tepe B, Polat ZA (2009) In vitro amoebicidal activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellani and their cytotoxic potentials on corneal cells. J Ocul Pharmacol Ther 25:293–298

    Article  PubMed  CAS  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–652

    Article  PubMed  CAS  Google Scholar 

  • Kanafani ZA, Fowler VG (2006) Staphylococcus aureus infections: New challenges, from an old pathogen. Enferm Infect Microbiol Clin 24:82–193

    Article  Google Scholar 

  • Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344

    Article  PubMed  CAS  Google Scholar 

  • Lopes FC, Silva LAD, Tichota DM, Daroit DJ, Velho RV, Pereira JQ, Côrrea APF, Brandelli A (2011) Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res 2011:487093. doi:10.4061/2011/487093

    Article  PubMed  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    Article  PubMed  CAS  Google Scholar 

  • Mandenius CF, Brundin A (2008) Bioprocess Optimization Using Design-of-Experiments Methodology. Biotechnol Prog 24:1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Blanch JF, Sánchez G, Aznar R (2009) Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. Int J Food Microbiol 135:15–21

    Article  PubMed  Google Scholar 

  • Monaci L, Aresta A, Palmisano F, Visconti A, Zambonin CG (2002) Amino-bonded silica as stationary phase for liquid chromatographic determination of cyclopiazonic acid in fungal extracts. J Chromatogr A 955:79–86

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–71

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J (1997) Physiological Engineering. In: Nielsen J (ed) Physiological Engineering Aspects of Penicillium chrysogenum. World Scientific, Singapore, pp 23–54

    Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  PubMed  CAS  Google Scholar 

  • Nigam PS (2009) Production of bioactive secondary metabolites. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, New York, pp 129–146

    Chapter  Google Scholar 

  • Nigam PS, Gupta N, Anthwal A (2009) Pre-treatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, New York, pp 13–36

    Chapter  Google Scholar 

  • Pérez-Garcia A, Romero D, Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:1–7

    Article  Google Scholar 

  • Petit P, Lucas EMF, Abreu LM, Pfenning LH, Takahashi JA (2009) Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. Electron J Biotechnol 4:1–9

    Article  Google Scholar 

  • Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Ferreira AG, Williams DE, Patrick BO, Dalisay DS, Andersen RJ, Berlinck RGS (2010) Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. J Nat Prod 73:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer, New York

    Book  Google Scholar 

  • Polat ZA, Vural A, Ozan F, Tepe B, Özcelik S, Cetin A (2008) In vitro evaluation of the amoebicidal activity of garlic (Allium sativum) extract on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. J Ocul Pharmacol Ther 24:8–14

    Article  PubMed  CAS  Google Scholar 

  • Poole K (2001) Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4:500–508

    Article  PubMed  CAS  Google Scholar 

  • Rancic A, Sokovic M, Karioti A, Vukojevic J, Skaltsa H (2006) Isolation and structural elucidation of two secondary metabolites from the filamentous fungus Penicillium ochrochloron with antimicrobial activity. Environ Toxicol Pharmacol 22:80–84

    Article  PubMed  CAS  Google Scholar 

  • Ródio C, Vianna DR, Kowalski KP, Panatieri LF, von Poser G, Rott MB (2008) In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol Res 104:191–194

    Article  PubMed  Google Scholar 

  • Rouse S, Harnett D, Vaughan A, van Sinderen D (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104:915–923

    Article  PubMed  CAS  Google Scholar 

  • Rundberget T, Skaar I, Flaoyen A (2004) The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90:181–188

    Article  PubMed  CAS  Google Scholar 

  • Senyuva HZ, Gilbert J, Öztürkoglu S (2008) Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS. Anal Chim Acta 617:97–106

    Article  PubMed  CAS  Google Scholar 

  • Serra AT, Matias AA, Nunes AVM, Leitão MC, Brito D, Bronze R, Silva S, Pires A, Crespo MT, San Romão MV, Duarte CM (2008) In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food. Innov Food Sci Emerg Technol 9:311–319

    Article  CAS  Google Scholar 

  • Skouri-Gargouri H, Ali BM, Gargouri A (2009) Molecular cloning, structural analysis and modeling of the AcAFP antifungal peptide from Aspergillus clavatus. Peptides 30:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Smedsgaard J, Hansen ME, Frisvad JC (2004) Classification of terverticillate Penicillia by electrospray mass spectrometric profiling. Stud Mycol 49:243–251

    Google Scholar 

  • Song J (2003) Introduction: the goals of antimicrobial therapy. Int J Infect Dis 7:51–54

    Article  Google Scholar 

  • Sumarah MW, Adams GW, Berghout J, Slack GJ, Wilson AM, Miller JD (2008) Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycol Res 112:731–736

    Article  PubMed  Google Scholar 

  • Tatsuta K, Yamaguchi T (2005) The first stereoselective total synthesis of antiviral antibiotic, xanthocillin X dimethylether and its stereoisomer. Tetrahedr Lett 46:5017–5020

    Article  CAS  Google Scholar 

  • Vishwanath V, Sulyok M, Labuda R, Bicker W, Krska R (2009) Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/ tandem mass spectrometry. Anal Bioanal Chem 395:1355–1372

    Article  PubMed  CAS  Google Scholar 

  • Wang SL, Yen YH, Tsiao WJ, Chang WT, Wang CL (2002) Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme Microb Technol 31:337–344

    Article  Google Scholar 

  • WHO - World Health Organization - The top 10 causes of death http://www.who.int/mediacentre/factsheets/fs310/en/index.html. Acessed on July 29th, 2012.

Download references

Acknowledgments

Authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. In addition, we also thank Dr. Patricia Valente da Silva, Dr. Charley Christian Staats, Dr. Fernanda Stanisçuaski (UFRGS) and Dr. João Lúcio de Azevedo (ESALQ/USP) for the insightful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, F.C., Tichota, D.M., Sauter, I.P. et al. Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Ann Microbiol 63, 771–778 (2013). https://doi.org/10.1007/s13213-012-0532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0532-6

Keywords

Navigation