Skip to main content
Log in

Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM), employing the fractional factorial design (FFD) was used to optimize the fermentation medium for the production of glucose oxidase (GOD) from a marine isolate (NRC9) of Aspergillus niger under submerged fermentation. The design was employed by selecting glucose, CaCO3, ammonium phosphate and MgSO4 concentrations as model factors by ‘one variable at a time’ experiment. A second-order quadratic model and response surface method showed that the optimum concentrations (g/l) glucose, 100; CaCO3, 25; (NH4)2HPO4, 1.8 and 0.4 of MgSO4, resulted in an improvement of GOD production (170 ± 0.88 U/ml) as compared to the initial level (109.81 ± 1.38 U/ml) after four days of incubation at 200 rpm and 30 °C, whereas its predicted value obtained by the quadratic model was 164.36 U/ml. Analysis of variance (ANOVA) showed a high coefficient of determination value (R 2) of 0.967, ensuring a satisfactory adjustment of the quadratic model with the experimental data. This is the first report on production of glucose oxidase from a marine fungal isolate, Aspergillus niger NRC9, using statistical experimental design and response surface methodology in optimization of its production under submerged fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Awad GEA, Salam WA, El-diwany A, Salama BA, Abdelkader AF, Esawy MAD (2011) Keratinase production by Bacillus pumilus GHD in solid-state fermentation using sugar cane bagasse: optimisation of culture conditions using a Box-Behnken experimental design. Ann Microbiol 61:663–672

    Article  CAS  Google Scholar 

  • Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Optimization of Aspergillus niger Fermentation for the Production of Glucose Oxidase. Food Bioprocess Technol 2:344–352

    Article  CAS  Google Scholar 

  • Banks G, Board RG, Sparks NHC (1986) Natural antimicrobial systems and their potential in food preservation of the future. Biotechnol Appl Biochem 8:103–147

    PubMed  CAS  Google Scholar 

  • Bodade RG, Khobragade CN, Arfeen S (2010) Optimization of culture conditions for glucose oxidase production by a Penicillium chrysogenum SRT 19 strain. Eng Life Sci 10:35–39

    Article  CAS  Google Scholar 

  • Chen HC (1996) Optimizing the concentrations of carbon, nitrogen and phosphorus in citric acid fermentation with response surface method. Food Biotechnol 10:13–27

    Article  CAS  Google Scholar 

  • Ciucu A, Patroesco G (1984) Fast spectrometric method of determining the activity of glucose oxidase. Analytical letter 17:1417–1427

    Article  CAS  Google Scholar 

  • Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY (2006) Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresour Technol 97:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • El-Enshasy H, Kleine J, Rinas U (2006) Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 41:2103–2112

    Article  CAS  Google Scholar 

  • Hatziuikolaou DI, Macris BJ (1995) Factors regulating production of glucose oxidase by Aspergillus niger. Enzyme Microbial Technol 17:530–534

    Article  Google Scholar 

  • Kapat A, Jung JK, Park YH (2001) Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae: optimization of oxygen transfer condition. J Appl Microbiol 90:216–222

    Article  PubMed  CAS  Google Scholar 

  • Lavollay J, Laborey F (1941) Synthesis of lactoflavin by Aspergillus niger owing to Mg deficiency and diminution of cellular oxidation. Ann Fermentations 6:129

    CAS  Google Scholar 

  • Leskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem Cell Biol 37:731

    Article  PubMed  CAS  Google Scholar 

  • Liu JZ, Yang HY, Weng LP, Ji LN (1999) Synthesis of glucose oxidase and catalase by Aspergillus niger in resting cell culture system. Lett Appl Microbiol 29:337–341

    Article  PubMed  CAS  Google Scholar 

  • Liu JZ, Huang YY, Liu J, Weng LP, Ji LN (2001) Effects of metal ions on simultaneous production of glucose oxidase and catalase by Aspergillus niger. Lett Appl Microbiol 32:16–19

    Article  PubMed  CAS  Google Scholar 

  • Malherbe DF, Toit MD, Otero RRC, Rensburg PV, Pretorius IS (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61:502–511

    PubMed  CAS  Google Scholar 

  • Mariam I, Nagra AS, Haq I, Ali S (2010) Application of 2-factorial design on the enhanced production of calcium gluconate by a mutant strain of Aspergillus niger. Bioresour Technol 101:4075–4080

    Article  PubMed  CAS  Google Scholar 

  • Mirón J, Vázquez JA, González MP, Murado MA (2008) Joint effect of nitrogen and phosphorous on glucose oxidase production by Aspergillus niger: Discussion of an experimental design with a risk of co-linearity. Biochem Eng J 40:54–63

    Article  Google Scholar 

  • Munk V, Pásková J, Hanus J (1963) Glucose oxidase of Aspergillus niger. Folia Microbiol 8:203–214

    Article  CAS  Google Scholar 

  • Park EH, Shin YM, Lim YY, Kwon TH, Kim DH, Yang MS (2000) Expression of glucose oxidase by using recombinant yeast. J Biotechnol 81:35–44

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kang J, Lee HI, Kim W (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766

    Article  PubMed  CAS  Google Scholar 

  • Petruccioli M, Federici F (1993) Glucose oxidase production by Penicillium variabile P13: effect of medium composition. J Appl Bacteriol 75:369–372

    Article  CAS  Google Scholar 

  • Petruccioli M, Fenice M, Piccioni P, Federici F (1995a) Effect of stirrer speed and buffering agents on the production of glucose oxidase and catalase by Penicillium variabile P16 in benchtop bioreactor. Enzyme Microbiol Technol 17:336–339

    Article  CAS  Google Scholar 

  • Petruccioli M, Piccioni P, Federici F, Polsinelli M (1995b) Glucose oxidase overproducing mutants of Penicillium variabile (P16). FEMS Microbiol Lett 128:107–112

    Article  CAS  Google Scholar 

  • Rahulan R, Nampoothiri KM, Szakacs G, Nagy V, Pandey A (2009) Statistical optimization of l-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochem Eng J 43:64–71

    Article  CAS  Google Scholar 

  • Rao PV, Jayaraman K, Lakshmanan CM (1993) Production of lipase by Candida rugosa in solid-state fermentation. Medium optimization and effect of aeration. Process Biochem 28:391–395

    Article  CAS  Google Scholar 

  • Richter G, In T, Godfrey J (1983) In: Reichelt (ed) Industrial Enzymology. Mc Millian Publishers, London, p 428

    Google Scholar 

  • Rogalski J, Fiedurek J, Szczordrak J, Kapusta K, Leonowicz A (1988) Optimization of glucose oxidase synthesis in submerged cultures of Aspergillus niger G-13 mutant. Enzyme Microbiol Technol 10:508–511

    Article  CAS  Google Scholar 

  • Rosa SM, Abel Soria M, Vélez CG, Galvagno MA (2010) Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour Technol 101:2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Sabir S, Bhatti HN, Zia M, Shaikh MA (2007) Enhanced production of GOD using P. notatum and rice polish. Food Technol Biotechnol 45:443–446

    CAS  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (1997) Principles of fermentation technology, 2nd edn. Aditya, New Delhi, pp 93–105

    Google Scholar 

  • Tzanov T, Costa SA, Gbbitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93:87–94

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Marcin C, Shifflet MA, Salmon P, Brix T, Greasham R, Buokland B, Chartrain M (1996) Development of a defined medium fermentation process for physotigmine production by Streptomyces griseofuscus. Appl Microbiol Biotechnol 44:568–575

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Momeu C, Zakhartsev MV, Schwaneberg U (2006) Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens Bioelectron 21:2046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Center, Chemistry of natural and microbial products department (Egypt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada E. A. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A. et al. Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Ann Microbiol 63, 523–531 (2013). https://doi.org/10.1007/s13213-012-0497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0497-5

Keywords

Navigation