Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil

Abstract

In the present study, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]-producing bacterial strain was isolated from trinitrotoluene (TNT)-contaminated soil using Sudan black B and Nile blue A staining as a screening method. The bacterial strain was identified as Bacillus cereus FA11 on the basis of biochemical tests and 16S rRNA sequencing. Culture conditions, such as pH, temperature, time and carbon sources, were optimized for maximum production of the copolymer. B. cereus FA11 was found capable of producing a maximum of 48.43% poly(3HB-co-3HV) at pH 7, with glucose as the carbon source, after 48 h of incubation at 30°C. Fourier transform infrared analysis of the extracted polymer revealed similarities in the spectra of the microbial and commercially available poly(3HB-co-3HV) at 1720.2, 1278.5 and 2932.1 cm−1 wavelength. 1H-nuclear magnetic resonance analysis of the polymer confirmed it as a copolymer composed of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen AD, Anderson WA, Ayorinde FO, Eribo E (2010) Biosynthesis and characterization of copolymer poly (3HB-co-3HV) from saponifed Jatropha curcas oil by Pseudomonas oleovorans. Ind Microbiol Biotechnol 37:849–856

    Article  CAS  Google Scholar 

  2. Arnold L, Demain J, Davis E (1999). Polyhydroxyalkanoates. Manual of microbiology and biotechnoloy, vol. 2. American Society of Microbiology, Washington D.C., pp 616–627

  3. Arshad MU, Jamil N, Naheed N, Husnain S (2007) Analysis of bacterial strains from contaminated and non-contaminated sites for the production of biopolymers. Afr J Biotechnol 6:1115–1121

    CAS  Google Scholar 

  4. Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Macromolecules 19:2865–2871

    Article  CAS  Google Scholar 

  5. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    PubMed  Article  CAS  Google Scholar 

  6. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    PubMed  Article  CAS  Google Scholar 

  7. Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs

    Google Scholar 

  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  9. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207

    PubMed  Article  CAS  Google Scholar 

  10. Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812

    Article  CAS  Google Scholar 

  11. Holt JG (1993) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott William and Wilkins, Baltimore

    Google Scholar 

  12. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  13. Kulkarni SO, Kanekar PP, Nilegaonkar SS, Sarnaik SS, Jog JP (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake India. Bioresource Technol 101(24):9765–9771

    Article  CAS  Google Scholar 

  14. Kung SS, Chuang YC, Chen CH, Chien CC (2007) Isolation of polyhydroxyalkanoates producing bacteria using a combination of phenotypic and genotypic approach. Lett Appl Microbiol 44:364–371

    PubMed  Article  CAS  Google Scholar 

  15. Lee SY, Choi JIL (1999) Polyhydroxyalkanoates: Biodegradable polymer. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM Press, Washington D.C. pp 616–627

    Google Scholar 

  16. Lemoigne M (1923) Production d'acide β-oxybutyrique par certaines bactéries du groupe B. subtilis. C R Acad Sci 176:1761–1765

    CAS  Google Scholar 

  17. Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresource Technol 98:2313–2320

    Article  CAS  Google Scholar 

  18. Liu H, Pancholi M, Stubbs J III, Raghavan D (2010) Influence of hydroxyvalerate composition of polyhydroxybutyrate valerate (PHBV) copolymer on bone cell viability and in vitro degradation. J Appl Polym Sci 116(6):3225–3231

    CAS  Google Scholar 

  19. Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    PubMed  Article  CAS  Google Scholar 

  20. Misra AK, Thakur MS, Srinivas P, Karanth NG (2000) Screening of poly-beta-hydroxybutyrate producing microorganisms using Fourier transform infrared spectroscopy. Biotechnol Lett 22:1217–1219

    Article  CAS  Google Scholar 

  21. Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkonates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24

    CAS  Google Scholar 

  22. Reddy CS, Rashmi R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresource Technol 87:137–146

    Article  CAS  Google Scholar 

  23. Reddy SV, Thirumala M, Mahmood SK (2009) A novel Bacillus sp. accumulating poly (3-hydroxybutyrate-co-3 hydroxyvalerate) from a single carbon substrate. J Ind Microbiol Biotechnol 36:837–843

    PubMed  Article  CAS  Google Scholar 

  24. Rehman S, Jamil N, Husnain S (2007) Screening of different contaminated environments for polyhydroxyalkanoates producing bacterial strains. Biologia 62:650–656

    Article  CAS  Google Scholar 

  25. Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    PubMed  Article  CAS  Google Scholar 

  26. Sato H, Dybal J, Murakami R, Noda I, Ozaki Y (2005) Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H…..O hydrogen bonding and thermal behavior of biodegradable polyhydroxyalkanoate. J Mol Struct 744:35–46

    Article  Google Scholar 

  27. Shang L, Jiang M, Chang HN (2003) Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol Lett 25:1415–1419

    PubMed  Article  CAS  Google Scholar 

  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  29. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584

    PubMed  CAS  Google Scholar 

  30. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus sp. J Biotechnol 127:475–487

    PubMed  Article  CAS  Google Scholar 

  31. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable Polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    PubMed  Article  CAS  Google Scholar 

  32. Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:(2)697–703

    Google Scholar 

  33. Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218

    PubMed  Article  CAS  Google Scholar 

  34. Yilmaz M, Soran H, Beyatli Y (2005) Determination of poly-β-hydroxybutyrate (PHB) production by some Bacillus spp. World J Microbiol Biotechnol 21:565–566

    Article  CAS  Google Scholar 

  35. Yoshie N, Saito M, Inoue Y (2004) Effect of chemical compositional distribution on solid-state structures and properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 45:1903–1911

    Article  CAS  Google Scholar 

  36. Yüksekdağ ZN, Aslim B, Beyatli Y, Mercan N (2004) Effect of carbon and nitrogen sources and incubation times on poly-beta-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. Afr J Biotechnol 3:63–66

    Google Scholar 

Download references

Acknowledgments

We thank Higher Education Commission (HEC), Pakistan, for providing financial assistance to complete this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farha Masood.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Masood, F., Hasan, F., Ahmed, S. et al. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil. Ann Microbiol 62, 1377–1384 (2012). https://doi.org/10.1007/s13213-011-0386-3

Download citation

Keywords

  • TNT-contaminated soil
  • Biodegradable thermoplastic
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
  • Bacillus cereus