Skip to main content
Log in

Site-directed mutagenesis gives insights into substrate specificity of Sulfolobus solfataricus purine-specific nucleoside hydrolase

  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Nucleoside hydrolases (NHs) are a class of metalloproteins that catalyze the irreversible hydrolysis of the N-glycosidic bond of β-ribonucleosides forming ribose and purine or pyrimidine base. In the hyperthermophilic archaeon Sulfolobus solfataricus, two NHs have been purified and extensively characterized. Although these enzymes show different substrate specificity, one for purines, the other for pyrimidines, their architectures are similar to that of non-specific NHs previously identified in protozoa. The detailed inspection into the active site of the two homologous enzymes obtained by homology modeling allowed us to infer the role of specific residues in substrate specificity. We report here the site-directed mutagenesis of the Sulfolobus solfataricus purine-specific inosine-adenosine-guanosine nucleoside hydrolase (SsIAG-NH). The double (L221Y/N228V) mutant of SsIAG-NH was expressed in E. coli and purified, and its activity with different substrates was compared to that of the wild-type enzyme. The double substitution modifies the catalytic pattern of the wild-type enzyme affecting both its substrate specificity and catalytic efficiency. Kinetic data obtained for the double mutant are in good agreement with modeling predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

NH:

Nucleoside hydrolase

SsIAG-NH:

Sulfolobus solfataricus purine-specific inosine-adenosine-guanosine nucleoside hydrolase

SsCU-NH:

Sulfolobus solfataricus pyrimidine-specific nucleoside hydrolase

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Camici M, Tozzi MG, Allegrini S, Del Corso A, Sanfilippo O, Daidone MG, De Marco C, Ipata PL (1990) Purine salvage enzyme activities in normal and neoplastic human tissues. Cancer Biochem Biophys 11:201–209

    PubMed  CAS  Google Scholar 

  • Campos A, Rijo-Johansen MJ, Carneiro MF, Fevereiro P (2005) Purification and characterization of adenosine nucleosidase from Coffea arabica young leaves. Phytochemistry 66:147–151

    Article  PubMed  CAS  Google Scholar 

  • Degano M, Gopaul DN, Scapin G, Schramm VL, Sacchettini JC (1996) Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 35:5971–5981

    Article  PubMed  CAS  Google Scholar 

  • Degano M, Almo SC, Sacchettini JC, Schramm VL (1998) Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor. Biochemistry 37:6277–6285

    Article  PubMed  CAS  Google Scholar 

  • Garau G, Muzzolini L, Tornaghi P, Degano M (2010) Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. Struct Biol 10:1–14

    Article  Google Scholar 

  • Giabbai B, Degano M (2004) Crystal structure to 1.7 Å of the Escherichia coli pyrimidine nucleoside hydrolase YeiK, a novel candidate for cancer gene therapy. Structure 12:739–749

    Article  PubMed  CAS  Google Scholar 

  • Iovane E, Giabbai B, Muzzolini L, Matafora V, Fornili A, Minici C, Giannese F, Degano M (2008) Structural basis for substrate specificity in group 1 nucleoside hydrolases. Biochemistry 47:4418–4426

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a programme to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Mitterbauer R, Karl T, Adam G (2002) Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N-ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase. Appl Environ Microbiol 68:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Muzzolini L, Versées W, Tornaghi P, Van Holsbeke E, Steyaert J, Degano M (2006) New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product. Biochemistry 45:773–782

    Article  PubMed  CAS  Google Scholar 

  • Petersen C, Møller LB (2001) The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. J Biol Chem 276:884–894

    Article  PubMed  CAS  Google Scholar 

  • Porcelli M, Concilio L, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G (2008) Pyrimidine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus-Biochemical characterization and homology modeling. FEBS J 275:1900–1914

    Article  PubMed  CAS  Google Scholar 

  • Porcelli M, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G (2009) Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: Insights into mechanisms of protein stabilization. Arch Biochem Biophys 483:55–65

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Valenzuela JG (2003) The salivary purine nucleosidase of the mosquito, Aedes aegypti. Insect Biochem Mol Biol 33:13–22

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schramm VL (1998) Enzymatic transition states and transition-state analog design. Annu Rev Biochem 67:693–729

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Schramm VL, Almo SC (1999) Nucleoside hydrolase from Leishmania major. Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5 Å crystal structure. J Biol Chem 274:21114–21120

    Article  PubMed  CAS  Google Scholar 

  • Sippl M (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins D, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Versées W, Steyaert J (2003) Catalysis by nucleoside hydrolases. Curr Opin Struct Biol 13:731–738

    Article  PubMed  Google Scholar 

  • Versées W, Decanniere K, Pellé R, Depoorter J, Brosens E, Parkin DW, Steyaert J (2001) Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 307:1363–1379

    Article  PubMed  Google Scholar 

  • Versées W, Van Holsbeke E, De Vos S, Decanniere K, Zegers I, Steyaert J (2003) Cloning, preliminary characterization and crystallization of nucleoside hydrolases from Caenorhabditis elegans and Campylobacter jejuni. Acta Crystallogr D Biol Crystallogr 59:1087–1089

    Article  PubMed  Google Scholar 

  • Weber K, Pringle JR, Osborn M (1972) Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol 26:3–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from “Regione Campania” L.R. n.5/2002 and was partially supported by a grant of “Ministero dell’Università e della Ricerca Scientifica” Prin 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Porcelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcelli, M., De Leo, E., Marabotti, A. et al. Site-directed mutagenesis gives insights into substrate specificity of Sulfolobus solfataricus purine-specific nucleoside hydrolase. Ann Microbiol 62, 881–887 (2012). https://doi.org/10.1007/s13213-011-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0379-2

Keywords

Navigation