Skip to main content
Log in

Viability of Agaricus blazei after long-term cryopreservation

  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Agaricus blazei is a basidiomycete of medicinal and gastronomic importance, but few publications have appeared on preservation. We have evaluated A. blazei cryopreservation at −70°C using different cryoprotectants and freezing protocols. Malt extract agar disks containing grown mycelia were transferred to cryotubes containing different cryoprotective solutions. Freezing protocols were from 25°C to: (1) 4°C for 30 min and then to −70°C or (2) directly to −70°C. The results demonstrate that it is the cryoprotective agent—and not the freezing protocol—which was the most important variable for maintaining mycelial viability after cryopreservation. Long-term cryopreservation (4 years) was effective when saccharose or glucose was used as cryoprotectant regardless of the freezing protocol, dimethyl sulfoxide was effective when a slow freezing protocol was used, and glycerol, polyethylene glycol, and malt extract were ineffective as cryoprotectants regardless of the freezing protocol. All of the cryoprotectants tested were effective for the short-term cryopreservation (1 year) of A. blazei, with the exception of malt extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Braga GC, Eira AF, Celso PG, Colauto NB (1998) Manual do cultivo de Agaricus blazei Murr. “Cogumelo-do-Sol”. FEPAF, Botucatu

  • Challen MP, Elliot TJ (1986) Polypropylene straw ampoules for storage of microorganisms in liquid nitrogen. J Microbiol Methods 5:11–23. doi:10.1016/0167-7012(86)90019-9

    Article  Google Scholar 

  • Chetverikova EP (2009) The problem of stability of organisms after cryopreservation (fungi as example). Biophysics 54:626–630. doi:10.1134/S0006350909050133

    Article  Google Scholar 

  • Colauto NB, Aizono PM, Carvalho LRM, Paccola-Meirelles LD, Linde GA (2008) Temperature and pH conditions for mycelial growth of Agaricus brasiliensis on axenic cultivation. Semina Cienc Agrar 29:307–312

    Google Scholar 

  • Colauto NB, Silveira AR, Eira AF, Linde GA (2010a) Alternative to peat for Agaricus brasiliensis yield. Bioresour Technol 101:712–716. doi:10.1016/j.biortech.2009.08.052

    Article  PubMed  CAS  Google Scholar 

  • Colauto NB, Silveira AR, Eira AF, Linde GA (2010b) Thermal treatments on lime schist casing layer for Agaricus brasiliensis cultivation. Cienc Rural 40:1660–1663

    Article  Google Scholar 

  • Colauto NB, Silveira AR, Eira AF, Linde GA (2010c) Pasteurization of Brazilian peat for Agaricus brasiliensis cultivation. Semina Cienc Agrar 31:1331–1336

    Google Scholar 

  • Colauto NB, Eira AF, Linde GA (2011a) Cryopreservation at −80°C of Agaricus blazei on rice grains. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0772-9

  • Colauto NB, Silveira AR, Eira AF, Linde GA (2011b) Production flush of Agaricus blazei on Brazilian casing layes. Braz J Microbiol 42:616–623. doi:10.1590/S1517-83822011000200026

    Article  Google Scholar 

  • D’Agostini EC, Mantovani TRD, Valle JS, Paccola-Meirelles LD, Colauto NB, Linde GA (2011) Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate cultivation. Sci Agric 68:295–300. doi:10.1590/S0103-90162011000300004

    Google Scholar 

  • Dumont F, Marechal PA, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70:268–272. doi:10.1128/AEM.70.1.268-272.2004

    Article  PubMed  CAS  Google Scholar 

  • Escouto LFS, Colauto NB, Linde GA, Aizono PM, Carvalho LRM, Eira AF (2005) Acceptability of the sensory characteristics of the Brazilian mushroom Agaricus brasiliensis. Braz J Food Technol 8:321–325

    Google Scholar 

  • Firenzuoli F, Gori L, Lombardo G (2008) The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-toxicological problems. Evid Based Complement Alternat Med 5:3–15. doi:10.1093/ecam/nem007

    Article  PubMed  CAS  Google Scholar 

  • Heinemann P (1993) Agarici Astroamericani VIII. Agariceae des regions intertropicales d’Amerique du Sud. Bull Jard Bot Nat Belg 62:355–384

    Article  Google Scholar 

  • Homolka L, Lisá L, Nerud F (2006) Basidiomycete cryopreservation on perlite: evaluation of a new method. Cryobiology 52:446–453. doi:10.1016/j.cryobiol.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  • Homolka L, Lisá L, Eichlerová I, Valášková V, Baldrian P (2010) Effect of long-term preservation of basidiomycetes on perlite in liquid nitrogen on their growth, morphological, enzymatic and genetic characteristics. Fungal Biol 114:929–935. doi:10.1016/j.funbio.2010.08.009

    Article  PubMed  CAS  Google Scholar 

  • Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229. doi:10.1016/S0011-2240(03)00046-4

    Article  PubMed  Google Scholar 

  • Ito T, Nakagiri A (1996) Viability of frozen cultures of basidiomycetes after fifteen-year storage. Microbiol Cult Coll 12:67–78

    Google Scholar 

  • Jong SC, Birmingham JM (2001) Cultivation and preservation of fungi in culture. In: McLaughlin DJ, MacLaughlin EG, Lemke PA (vol eds) Systematic and evolution, VII, part B:: Esser K, Lemke PA (eds) the mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, New York, pp 193–202

    Google Scholar 

  • Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97:12–24. doi:10.3852/mycologia.97.1.12

    Article  PubMed  Google Scholar 

  • Kitamoto Y, Suzuki A, Shimada S, Yamanaka K (2002) A new method for the preservation of fungus stock cultures by deep-freezing. Mycoscience 43:143–149. doi:10.1007/s102670200021

    Article  Google Scholar 

  • Lara-Herrera I, Mata G, Hernández RG (1998) Evaluation of the viability of Pleurotus spp. strains after liquid nitrogen cryopreservation. Rev Microbiol 29:193–196

    Article  Google Scholar 

  • Mantovani TRD, Macarini LK, Glowacki SAF, Haurani MN, Takakua FC, D’Agostini EC, Tanaka HS, Valle JS, Paccola-Meirelles LD, Linde GA, Colauto NB (2008) Criopreservação do gênero Pleurotus a −20°C e a −70°C. Arq Cienc Vet Zool Unipar 11:107–112

    Google Scholar 

  • Mata G, Estrada AER (2005) Viability in spawn stocks of the white button mushroom, Agaricus bisporus, after freezing in liquid nitrogen without a cryoprotectant. J Agric Sci Technol 1:153–162

    Google Scholar 

  • Mata G, Pérez-Merlo R (2003) Spawn viability in edible mushrooms after freezing in liquid nitrogen without a cryoprotectant. Cryobiology 47:14–20. doi:10.1016/S0011-2240(03)00064-6

    Article  PubMed  CAS  Google Scholar 

  • Mata G, Salmones D, Ortega PM (2000) Viability and mushroom production of Lentinula edodes and L. boryana strains (Fungi: Basidiomycetes) after cryogenic storage of spawn stocks. World J Microbiol Biotechnol 16:283–287. doi:10.1023/A:1008979202575

    Article  Google Scholar 

  • Monaghan RL, Gagliardi MM, Streicher SL (1999) Culture preservation and inoculum development. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington, DC pp 29–48

    Google Scholar 

  • Mourão F, Linde GA, Messa V, Cunha-Jr PL, Silva AV, Eira AF, Colauto NB (2009) Antineoplasic activity of Agaricus brasiliensis basidiocarps on different maturation phases. Braz J Microbiol 40:901–905. doi:10.1590/S1517-83822009000400022

    Article  Google Scholar 

  • Mourão F, Umeo SH, Bertéli MBD, Lourenço EL, Gasparotto-Jr A, Takemura OS, Linde GA, Colauto NB (2011a) Anti-inflammatory activity of Agaricus blazei in different basidiocarp maturation. Food Agric Immunol. doi:10.1080/09540105.2011.581272

  • Mourão F, Umeo SH, Takemura OS, Linde GA, Colauto NB (2011b) Antioxidant activity basidiocarps on different maturation phases. Braz J Microbiol 42:197–202. doi:10.1590/S1517-83822011000100024

    Article  Google Scholar 

  • Oliveira I, Pereira JA, Bento A, Baptista P (2011) Viability of Beauveria bassiana isolates after storage under several preservation methods. Ann Microbiol 61:339–344. doi:10.1007/s13213-010-0147-8

    Article  CAS  Google Scholar 

  • Perrin PW (1979) Long-term storage of cultures of wood-inhabiting fungi under mineral oil. Mycologia 71:867–869

    Article  Google Scholar 

  • Ryan MJ, Smith D, Jeffries P (2000) A decision-based key to determine the most appropriate protocol for the preservation of fungi. World J Microbiol Biotechnol 16:183–186. doi:10.1023/A:1008910006419

    Article  Google Scholar 

  • Vutyavanich T, Piromlertamorn W, Nunta S (2010) Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil Steril 93:1921–1928. doi:10.1016/j.fertnstert.2008.04.076

    Article  PubMed  CAS  Google Scholar 

  • Wasser SP, Didukh MY, Amazonas MALA, Nevo E, Stamets P, Eira AF (2002) Is widely cultivated culinary-medicinal royal sun Agaricus (the himematsutake mushroom) indeed Agaricus blazei Murrill? Int J Med Mushrooms 4:267–290

    Google Scholar 

Download references

Acknowledgments

The authors thank the Universidade Paranaense and the Master’s Program in Biotechnology Applied to Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Barros Colauto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colauto, N.B., Cordeiro, F.A., Geromini, K.V.N. et al. Viability of Agaricus blazei after long-term cryopreservation. Ann Microbiol 62, 871–876 (2012). https://doi.org/10.1007/s13213-011-0368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0368-5

Keywords

Navigation