Skip to main content

Selection of indigenous Saccharomyces cerevisiae strains to ferment red musts at low temperature

Abstract

The aim of this work was to select native Saccharomyces cerevisiae strains to conduct the alcoholic fermentation of red must at low temperature (15°C), thus producing volatile compounds that enhance the aromatic profile of young red wines. Native yeast strains were isolated from red musts and characterized using different oenological and technological criteria. The selection procedure included evaluating the yeasts’ characteristics in order to efficiently transform grape sugars into alcohol and carbon dioxide at a controlled rate and without development of off-flavors. The selection procedure also considered another set of oenological properties, namely: SO2 resistance, killer activity, low foam production, volatile acidity, high ethanol production and tolerance, sugar exhaustion, growth at low temperature, growth at high sugar concentration, formation of H2S, β-glycosidase activity and volatile compound synthesis in synthetic media. The pre-selected native S. cerevisiae strains were evaluated in microvinifications of Malbec must at 15°C, which were then evaluated to volatile compound composition and subjected to a sensorial descriptive analysis. The complete selection procedure was carried out over 2 years. This study provides a complete description of techniques for obtaining validated scientific results that can be used by oenologists and researchers in the selection of specific yeasts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aerny J (1996) Composés azotes des moûts et des vins. Rev Suisse Vitic Arboric Hortic 28:161–165

    Google Scholar 

  • Argiriou T, Kaliafas A, Psarianos K, Kanallaki M, Voliotis S, Koutinas AA (1996) Psychrotolerant Saccharomyces cerevisiae strains after an adaptation treatment for low temperature wine making. Process Biochem 31:639–643

    CAS  Article  Google Scholar 

  • Ayala JF, Echávarri J, Negueruela A (2001) Software MSCV (Método simplificado para el cálculo del color de los vinos) http://www.unizar.es/negueruela/html/grupo_color.htm)

  • Bardi E, Koutinas AA, Psarianos C, Kanellaki M (1997) Volatile by-products wine-making using immobilized yeast cells. Process Biochem 32:579–584

    CAS  Article  Google Scholar 

  • Bisson L (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–109

    CAS  Google Scholar 

  • Bovo B, Fontana F, Giacomini A, Corich V (2011) Effects of yeast inoculation on volatile compound production by grape marcs. Ann Microbiol (Spec issue) 61(1):117–124

    CAS  Article  Google Scholar 

  • Cabredo-Pinillos S, Cedrón-Fernández T, González-Briongos M, Puente-Pascual L, Sáenz-Barrio C (2006) Ultrasound-assisted extraction of volatile compounds from wine samples: optimisation of the method. Talata 69:1123–1129

    CAS  Article  Google Scholar 

  • Caridi A, Cufari A, Lovino R, Palumbo R, Tedesco I (2004) Influence of yeast on polyphenols composition of wine. Food Tec Biotech 42:37–40

    CAS  Google Scholar 

  • Casassa F, Sari S (2007) Aplicación del sistema CIE-Lab a los vinos tintos. Correlación con algunos parámetros tradicionales. Rev Enol 5:1–14

    Google Scholar 

  • Cavazza A, Poznanski E, Guzzon R (2011) Must treatments and wild yeast growth before and during alcoholic fermentation. Ann Microbiol (Spec issue) 61(1):41–48

    CAS  Article  Google Scholar 

  • Commission Internationale de l'Eclairage (1986) Recommendations on uniform colour spaces, colour difference evaluations and psychometric colour terms. In: Central Bureau (ed) Colorimetric, 2nd edn. Commission Internationale de l'Eclairage, Vienna, pp 1–74

  • Cubillos FA, Vásquez C, Faugeron S, Ganga A, Martínez C (2009) Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations. FEMS Microbiol Ecol 67:162–170

    PubMed  CAS  Article  Google Scholar 

  • Escribano-Bailón T, Alvarez-García M, Rivas-Gonzalo JC, Heredia FJ, Santos-Buelga C (2001) Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin-3-O-glucoside and (+)-catechin. J Agric Food Chem 49:1213–1217

    PubMed  Article  Google Scholar 

  • Fernández-Espinar MT, Esteve-Zarzoso B, Querol A, Barrio E (2000) RFLP of the ribosomal internal transcribes spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Anton van Lee 78:87–97

    Article  Google Scholar 

  • Fia G, Giovani G, Rosi I (2005) Study of β-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J Appl Microbiol 99:509–517

    PubMed  CAS  Article  Google Scholar 

  • Fleet GH (1997) Food Microbiology Fundamentals and Frontiers. In: Wine. Doyle MP, Beuchat LR, Monville T (ed) Wine. American Society for Microbiology, Washington, pp 671–696

  • Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Hardwood, Chur, Suiza, pp 27–54

    Google Scholar 

  • Grieco F, Tristezza M, Vetrano C, Bleve G, Panico E, Mita G, Logrieco A (2011) Exploitation of autochthonous micro-organism potential to enhance the quality of Apulian wines. Ann Microbiol (Spec issue) 61(1):67–73

    Article  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently release autonomous plasmids for transformation of E. coli. Gene 57:267–272

    PubMed  CAS  Article  Google Scholar 

  • Iland P, Ewart A, Sitters J, Markides A, Bruer N (2000) Techniques for Chemical Analysis and Quality Monitoring During Winemaking. Patrick Iland Wine Promotions, Campbeltown, Australia

    Google Scholar 

  • International Standards Organization 3591 (1977) Sensory analysis. Apparatus. Wine-tasting glass. Switzerland

  • Jiranek V, Langridge P, Henschke PA (1995) Validation of bismuth-containing indicator media for predicting H2S-producing potential of Saccharomyces cerevisiae wine yeasts under enological conditions. Am J Enol Vitic 46:269–273

    CAS  Google Scholar 

  • Kurtzman CP, Fell JW (eds) (1998) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Legras JL, Karst F (2003) Optimization of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol Lett 221:249–255

    PubMed  CAS  Article  Google Scholar 

  • Llauradó JM, Rozes N, Bobet R, Mas A, Constantí M (2002) Low temperature alcoholic fermentation in high sugar concentration grape must. J Food Sci 67:268–273

    Article  Google Scholar 

  • Lopes CA, Van Broock M, Querol A, Caballero AC (2002) Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales. J Appl Microbiol 93:608–615

    PubMed  CAS  Article  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín M, Querol A, Caballero (2007a) Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J Ind Microbiol Biotechnol 34:139–149

    PubMed  CAS  Article  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín M, Querol A, Caballero AC (2007b) Patagonian wines: the selection of an indigenous yeast starter. J Ind Microbiol Biotechnol 34:539–546

    PubMed  CAS  Article  Google Scholar 

  • Martínez C, Cosgaya P, Vásquez C, Gac S, Ganga A (2007) High degree of correlation between molecular polymorphism and geographic origin of wine yeast strains. J Appl Microbiol 103:2185–2195

    PubMed  Article  Google Scholar 

  • Martínez-Rodríguez A, Carrascosa AV, Barcenilla JM, Pozo-Bayón M, Polo MC (2001) Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol 18:183–191

    Article  Google Scholar 

  • Mauriello G, Capece A, D’Auria M, Garde-Cerdán T, Romano P (2009) SPME-GC method as a tool to differentiate VOC profiles in Saccharomyces cerevisiae wine yeasts. Food Microbiol 26:246–252

    PubMed  CAS  Article  Google Scholar 

  • Mendes-Ferreira A, Mendes-Faia A, Leão C (2002) Survey of hydrogen sulphide production by wine yeasts. J Food Prot 65:1033–1037

    PubMed  CAS  Google Scholar 

  • Mercado L, Dalcero A, Masuelli R, Combina M (2007) Diversity of Saccharomyces strains on grapes and winery surfaces: Analysis of their contribution to fermentative flora of Malbec wine from Mendoza (Argentina) during two consecutive years. Food Microbiol 24:403–412

    PubMed  CAS  Article  Google Scholar 

  • Organisation Internationale de la Vigne et du Vin (2005) Recueil des méthodes internationales d'analyse des vins et des moûts. OIV, Paris, France

    Google Scholar 

  • Pallmann C, Brown JA, Olineka TL, Cocolin L, Mills D, Bisson L (2001) Use of WL medium to profile native flora fermentations. Am J Enol Vitic 52:198–203

    CAS  Google Scholar 

  • Querol A, Barrio F, Ramon D (1992) A comparative study of different methods of yeast strain characterization. Syst Appl Microbiol 15:439–446

    Article  Google Scholar 

  • Rainieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–30

    CAS  Google Scholar 

  • Regodon JA, Pérez F, Valdés M, De Miguel C, Ramírez M (1997) A simple and effective procedure for selection of wine yeast strains. Food Microbiol 14:247–254

    Article  Google Scholar 

  • Reynolds A, Cliff M, Girard B, Kopp TG (2001) Influence of fermentation temperature on composition and sensory properties of Semillon and Shiraz wines. Am J Enol Vitic 52:235–240

    CAS  Google Scholar 

  • Rodríguez ME, Lopes CA, Van Broock M, Valles S, Ramón D, Caballero AC (2004) Screening and typing of Patagonian wine yeasts for glycosidase activities. J Appl Microbiol 96:84–95

    PubMed  Article  Google Scholar 

  • Rosi I, Vinela M, Domizio P (1994) Characterization of β-glucosidase activity in yeasts of oenological origin. J Appl Bacteriol 77:519–527

    PubMed  CAS  Article  Google Scholar 

  • Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26

    PubMed  CAS  Article  Google Scholar 

  • Spagna G, Barbagallo RN, Palmeri R, Restuccia C, Giudici P (2002) Properties of endogenous β-glucosidase of a Saccharomyces cerevisiae strain isolated from Sicilian musts and wines. Enzyme Microb Technol 31:1030–1035

    CAS  Article  Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, Van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    PubMed  CAS  Article  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173

    CAS  Article  Google Scholar 

  • Swiegers JH, Francis IL, Herderich MJ, Pretorius IS (2006) Meeting consumer expectations through management in vineyard and winery: the choice of yeast for fermentation offers great potential to adjust the aroma of Sauvignon Blanc wine. Aust N Z Wine Ind J 21:34–42

    Google Scholar 

  • Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozes N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136

    PubMed  CAS  Article  Google Scholar 

  • Valero E, Schuller D, Cambon B, Casal M, Dequin S (2005) Dissemination and survival of commercial wine yeast in the vineyard: a large-scale, three years study. FEMS Yeast Res 5:959–969

    PubMed  CAS  Article  Google Scholar 

  • Vaughan-Martini A, Martini A (1998) Determination of ethanol production. In: Kurtzman CP, Fell JW (eds) The yeasts. A taxonomic study. Elsevier, Amsterdam, pp 358–371

    Chapter  Google Scholar 

  • Vazquez F, Figueroa L, Toro M (2000) Enological characteristics of yeasts. In: Methods in Biotechnology vol. 14: Food Microbiology Protocols. Spencer JFT, Spencer AL (eds). Humana Press, Totowa, USA, pp 297–306

  • Verzera A, Ziino M, Scacco A, Lanza CM, Mazzaglia A, Romeo V, Condurso C (2008) Volatile compound and sensory analysis for the characterization of an Italian white wine from “Inzolia” grapes. Food Anal Methods 1:144–151

    Article  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols. A guide to methods and applications. Academic, San Diego, USA, pp 315–322

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Viticulture Regional Project MZA-SJ 51007 of the Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Combina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Massera, A., Assof, M., Sturm, M.E. et al. Selection of indigenous Saccharomyces cerevisiae strains to ferment red musts at low temperature. Ann Microbiol 62, 367–380 (2012). https://doi.org/10.1007/s13213-011-0271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0271-0

Keywords

  • Saccharomyces cerevisiae
  • Low temperature
  • Fermentation
  • Red wine
  • Aromatic profile