Skip to main content

Enterocins of Enterococcus faecium, emerging natural food preservatives

Abstract

Enterococci are distinct lactic acid bacteria, and also natural inhabitants of human and animal intestinal tracts. They may enter food products during processing through direct or indirect contamination and are mostly present in fermented food products, such as cheese, sausages, olives, etc. Nowadays, they are extensively studied for the production of bacteriocins (enterocins), which prevent the growth of many food-borne and spoilage-causing pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas spp., Bacillus spp. and Clostridium spp. Enterocins belong to class I, class IIa, class IIc, and class III of bacteriocins. Enterocins can be used in different food products in order to enhance their shelf life because they are heat stable and show activity over wide pH range. Enterocins are effective as well as safe to be used in the food system because they are "generally recognized as safe" (GRAS). Enterococcus faecium and Enterococcus faecalis are the predominant bacteriocin-producing species of Enterococcus in food products. The following review is focused on the bacteriocin-producing strains of Enterococcus faecium isolated from different traditional fermented food products. The aim of this review is to cover general features of the enterocins of Enterococcus faecium, the attempts made to purify them, and their potential application in different food products to improve their overall safety.

This is a preview of subscription content, access via your institution.

References

  1. Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martinez-Canamero M, Galvez A (2005) Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 28:383–397

    PubMed  CAS  Article  Google Scholar 

  2. Achemchem F, Martinez-Bueno M, Abrini J, Valdivia E, Maqueda M (2005) Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat’s cheese made in Morocco. J Appl Microbiol 99:141–150

    PubMed  CAS  Article  Google Scholar 

  3. Achemchem F, Abrini J, Martínez-Bueno M, Valdivia E, Maqueda M (2006) Control of Listeria monocytogenes in goat's milk and goat's Jben by the bacteriocinogenic Enterococcus faecium F58 strain. J Food Prot 69:2370–2376

    PubMed  Google Scholar 

  4. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

    PubMed  CAS  Google Scholar 

  5. Aymerich T, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Prot 63:721–726

    PubMed  CAS  Google Scholar 

  6. Balla E, Dicks LMT, du Toit, van der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE1071. Appl Environ Microbiol 66:1298–1304

    PubMed  CAS  Article  Google Scholar 

  7. Bennik MHJ, Vanloo B, Brasseur R, Gorris LGM, Smid EJ (1998) A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim Biophys Acta 1373:47–58

    PubMed  CAS  Article  Google Scholar 

  8. Benyacoub J, Czarnecki-Maulden GL, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, von der Weid T (2003) Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. J Nutr 133:1158–1162

    PubMed  CAS  Google Scholar 

  9. Booth MC, Bogie CP, Sahl HG, Siezen RL, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184

    PubMed  CAS  Article  Google Scholar 

  10. Callewaert R, Hugas M, De Vuyst L (2000) Competitivenessand bacteriocin production of Enterococci in the production ofspanish-style dry fermented sausages. Int J Food Microbiol 57:33–42

    Google Scholar 

  11. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernandez PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294

    PubMed  CAS  Article  Google Scholar 

  12. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    PubMed  CAS  Google Scholar 

  13. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994

    PubMed  CAS  Google Scholar 

  14. Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez P, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814

    PubMed  CAS  Article  Google Scholar 

  15. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    PubMed  CAS  Article  Google Scholar 

  16. Delves-Broughton J (2005) Nisin as a food preservative. Food Aust 57:525–527

    CAS  Google Scholar 

  17. Devriese LA, Pot B (1995) The genus Enterococcus. In: Wood BJB, Holzapfel WH (eds) The lactic acid bacteria. The genera of lactic acid bacteria, vol 2. Blackie, London, pp 327–367

    Chapter  Google Scholar 

  18. De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie, London, pp 91–142

    Google Scholar 

  19. Ennahar S, Deschamps N (2000) Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J Appl Microbiol 88:449–457

    PubMed  CAS  Article  Google Scholar 

  20. Ennahar S, Aoude-Werner D, Assobhei O, Hasselmann C (1998) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J Appl Microbiol 85:521–526

    PubMed  CAS  Article  Google Scholar 

  21. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    PubMed  CAS  Article  Google Scholar 

  22. Ennahar S, Asou Y, Zend T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301

    PubMed  CAS  Article  Google Scholar 

  23. Farias ME, de Ruiz Holgado AP, Sesma F (1994) Bacteriocin production by lactic acid bacteria isolated from regional cheeses: inhibition of foodborne pathogens. J Food Prot 57:1013–1015

    CAS  Google Scholar 

  24. Farias ME, Faria RN, de Ruiz Holgado AP, Sesma F (1996) Purification and N-terminal amino acid sequence of enterocin CRL 35, a ‘pediocin-like’ bacteriocin produced by Enterococcus faecium CRL 35. Lett Appl Microbiol 22:417–419

    PubMed  CAS  Article  Google Scholar 

  25. Floriano B, Ruiz-Barba JL, Jimenez-Diaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890

    PubMed  CAS  Google Scholar 

  26. Foulquie Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003a) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    PubMed  CAS  Article  Google Scholar 

  27. Foulquie Moreno MR, Rea MC, Cogan TM, De Vuyst L (2003b) Applicability of a bacteriocin producing Enterococcus faecium as co-culture in Cheddar cheese manufacture. Int J Food Microbiol 81:73–84

    PubMed  CAS  Article  Google Scholar 

  28. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    PubMed  CAS  Article  Google Scholar 

  29. Franz CMAP, Schillinger U, Holzapfel WH (1996) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270

    PubMed  CAS  Article  Google Scholar 

  30. Franz CMAP, Holzapfel WH, Stiles ME (1999a) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    PubMed  CAS  Article  Google Scholar 

  31. Franz CMAP, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999b) A typical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178

    PubMed  CAS  Google Scholar 

  32. Franz CMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    PubMed  CAS  Article  Google Scholar 

  33. Galvez A, Gimenez-Gallego G, Maqueda M, Valdivia E (1989) Purification and amino acid composition of peptide antibiotic AS-48 produced by Streptococcus (Enterococcus) faecalis ssp. liquefaciens S-48. Antimicro Agents Chemo 33:437–441

    CAS  Google Scholar 

  34. Galvez A, Valdivia E, Abriouel H, Camafeita E, Mendez E, Martinez-Bueno M, Maqueda M (1998) Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol 171:59–65

    PubMed  CAS  Article  Google Scholar 

  35. Garvie EI, Farrow JAE (1981) Sub-divisions within the genus Streptococcus using deoxyribonucleic acid/ribosomal ribonucleic acid hybridization. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt1, 2:299–310

    Google Scholar 

  36. Ghrairi T, Frere J, Berjeaud JM, Manai M (2008) Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control 19:162–169

    CAS  Article  Google Scholar 

  37. Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 26:163–171

    PubMed  CAS  Article  Google Scholar 

  38. Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    PubMed  CAS  Article  Google Scholar 

  39. Giraffa G, Carminati D (1997) Control of Listeria monocytogenes in the rind of Taleggio, a surface-smear cheese, by a bacteriocin from Enterococcus faecium 7C5. Sciences Des Aliments 17:383–391

    CAS  Google Scholar 

  40. Hardie JM, Whiley RA (1997) Classification and overview of the genera Streptococcus and Enterococcus. Soc Appl Bacteriol Symp Ser 26:1S–11S

    PubMed  CAS  Google Scholar 

  41. Herranz C, Mukhopadhyay S, Casaus P, Martinez JM, Rodriguez JM, Nes IF, Cintas LM, Hernandez PE (1999) Biochemical and genetic evidence of enterocin P production by two Enterococcus faecium-like strains isolated from fermented sausages. Curr Microbiol 39:282–290

    PubMed  CAS  Article  Google Scholar 

  42. Herranz C, Mukhopadhyay S, Casaus P, Martinez JM, Rodriguez JM, Nes IF, Hernandez PE, Cintas LM (2001) Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol 18:115–131

    CAS  Article  Google Scholar 

  43. Hickey RM, Twomey DP, Ross RP, Hill C (2003) Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149:655–664

    PubMed  CAS  Article  Google Scholar 

  44. Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20

    PubMed  CAS  Article  Google Scholar 

  45. Javed I, Safia A, Srikanth M, Mariam R, Bashir A, Ishtiaq AM, Abdul H, Jilani CG (2010) Production, characterization, and antimicrobial activity of a bacteriocin from newly isolated Enterococcus faecium IJ-31. J Food Prot 73:44–52

    PubMed  CAS  Google Scholar 

  46. Kalina AP (1970) The taxonomy and nomenclature of enterococci. Int J Syst Bacteriol 20:185–189

    Article  Google Scholar 

  47. Kilpper-Balz R, Schleifer KH (1981) DNA-rRNA hybridization studies among staphylococci and some other Gram-positive bacteria. FEMS Microbiol Lett 10:357–362

    Google Scholar 

  48. Kilpper-Balz R, Schleifer KH (1984) Nucleic acid hybrdization and cell wall composition studies of pyogenic streptococci. FEMS Microbiol Lett 24:355–364

    Google Scholar 

  49. Kilpper-Balz R, Fischer G, Schleifer KH (1982) Nucleic acid hybrdization of group N and group D streptococci. Curr Microbiol 7:245–250

    Article  Google Scholar 

  50. Kjems E (1955) Studies on streptococcal bacteriophages: I. Techniques for isolating phage producing strains. Pathol Microbiol Scand 36:433–440

    CAS  Article  Google Scholar 

  51. Kramer J, Brandis H (1975) Mode of action of two Streptococcus faecium bacteriocins. Antimicro Agents Chemo 7:117–120

    CAS  Google Scholar 

  52. Leroy F, Foulquie Moreno MR, De Vuyst L (2003) Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int J Food Microbiol 88:235–240

    PubMed  CAS  Article  Google Scholar 

  53. Linaje R, Coloma MD, Ge P, Zuniga M (2004) Characterization of fecal enterococci from rabbits for the selection of probiotic strains. J Appl Microbiol 96:761–771

    PubMed  CAS  Article  Google Scholar 

  54. Losteinkit Ch, Uchiyama K, Ochi S, Takaoka T, Nagahisa K, Shioya S (2001) Characterization of bacteriocin N15 produced by Enterococcus faecium N15 and cloning of the related genes. J Biosci Bioeng 91:390–395

    PubMed  CAS  Article  Google Scholar 

  55. Ludwig W, Seewaldt E, Kilpper-Balz R, Heinz, K, Magrum L, Woese CR, Fox GE, Stackebrandt E (1985)The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol 131:543–551

    Google Scholar 

  56. Martinez-Bueno M, Maqueda M, Galvez A, Samyn B, van Beeumen J, Coyette J (1994) Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48. J Bacteriol 176:6334–6339

    PubMed  CAS  Google Scholar 

  57. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308

    PubMed  CAS  Article  Google Scholar 

  58. Moll GN, Konings WN, Driessen JM (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Leeuwenhoek 76:185–198

    PubMed  CAS  Article  Google Scholar 

  59. Moreno MRF, Leisner JJ, Tee LK, Radu S, Rusul G, Vancanneyt M, De Vuyst L (2002) Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J Appl Microbiol 92:147–157

    PubMed  CAS  Article  Google Scholar 

  60. Mundt OJ (1976) Streptococci in dried and in frozen foods. J Milk Food Technol 36:364–367

    Google Scholar 

  61. Mundt OJ (1986) Enterococci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1063–1065

    Google Scholar 

  62. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall degrading bacteriocin from i LMG 2333. Appl Environ Microbiol 69:2975–2984

    PubMed  CAS  Article  Google Scholar 

  63. O’Keeffe T, Hill C, Ross RP (1999) Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515

    PubMed  Google Scholar 

  64. Olasupo NA, Schillinger U, Franz CM, Holzapfel WH (1994) Bacteriocin production by Enterococcus faecium NA01 from “wara”, a fermented skimmed cow milk product from West Africa. Lett Appl Microbiol 19:438–441

    PubMed  CAS  Article  Google Scholar 

  65. Orla-Jensen S (1919) The lactic acid bacteria. Mem R Acad Sci Denmark Sci Ser 85:81–197

  66. Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    PubMed  CAS  Article  Google Scholar 

  67. Saavedra L, Maria PT, Fernando S, Graciela FDV (2003) Home-made traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int J Food Microbiol 88:241–245

    PubMed  CAS  Article  Google Scholar 

  68. Sanders ME (1998) Overview on functional foods: emphasis on probiotic bacteria. Int Dairy J 8:341–347

    Article  Google Scholar 

  69. Schleifer KH, Kilpper-Balz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecalis comb. nov. Int J Syst Bacteriol 34:31–34

    Article  Google Scholar 

  70. Schleifer KH, Kilpper-Balz R (1987) Molecular and chemo-taxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–19

    CAS  Google Scholar 

  71. Stackebrandt E, Teuber M (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317–324

    PubMed  CAS  Article  Google Scholar 

  72. Thiercelin E (1899) Sur un diplocoque saprophyte de l’intestin susceptible à devenir pathogene. C R Séances Soc Biol Paris 51:269–271

    Google Scholar 

  73. Thiercelin E, Jouhaud L (1903) Reproduction de l’entérocoque; taches centrales; granulations peripheriques et microblastes. C R Séances Soc Biol Paris 55:686–688

    Google Scholar 

  74. Todorov SD, Wachsman M, Tome E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879

    PubMed  CAS  Article  Google Scholar 

  75. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative element pYI17. J Bacteriol 178:3585–3593

    PubMed  CAS  Google Scholar 

  76. Wessels D, Jooste PJ, Mostert JF (1988) Die voorkoms van Enterococcus spesies in melk en suiwelprodukte. S Afr Tydskr Suiwelk 20:68–72

    Google Scholar 

  77. Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M (2003) Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746–5753

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tariq Masud.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Javed, A., Masud, T., ul Ain, Q. et al. Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol 61, 699–708 (2011). https://doi.org/10.1007/s13213-011-0223-8

Download citation

Keywords

  • Enterococcus faecium
  • Enterocin
  • Bacteriocin
  • Food preservation