Skip to main content
Log in

Diversity of members of the Streptomyces violaceusniger 16S rRNA gene clade in the legumes rhizosphere in Turkey

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Large numbers of putatively novel streptomycetes were isolated from rhizosphere soils of Albizia distachya, Colutea arborescens, Gleditsia triancanthos, Medicago arborea, Robinia pseudoacacia, Sophora japonica, Spartium junceum, Tipuana tipu and Wisteria sinensis. Representative isolates were determined to 6 multi-membered and 11 single-membered colour groups based on their ability to form pigments on oatmeal and peptone yeast extract iron agars. The largest colour groups, which encompassed 40 isolates with morphological properties typical of members of the Streptomyces violaceusniger 16S rRNA gene clade, were tested for a characteristic PCR amplification product with taxon-specific primers. In spite of highest 16S rRNA gene nucleotide similarity among the isolated strains belonging to the S. violaceusniger 16S rRNA gene clade, it is evident from the phenotypic, molecular and chemical results obtained that many new species will emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Tai A, Kim B, Kim SB, Manfio GP, Goodfellow M (1999) Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int J Syst Bacteriol 49:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    PubMed  CAS  Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM, Goodfellow M (2000) Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77:337–353

    Article  PubMed  CAS  Google Scholar 

  • Blaak H, Schnellmann J, Walter S, Henrissat B, Schrempf H (1993) Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domainsand relationship to other chitinases. Eur J Biochem 214:659–669

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain K, Crawford DL (1999) In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED 9 and WYE 53. J Ind Microbiol Biotechnol 23:641–646

    Article  PubMed  CAS  Google Scholar 

  • Chun J (1995) Computer assisted classification and identification of actinomycetes. PhD thesis, Department of Microbiology, University of Newcastle, Newcastle upon Tyne, UK

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16 S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  PubMed  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in roots of wheat (Triticum aestivum L.) by terminal restriction fragments length polymorphism and sequencing of 16 S rRNA Clones. Appl Environ Microbiol 70:1787–1794

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2002) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytology 82:85–102

    Google Scholar 

  • Duangmal K, Ward AC, Goodfellow M (2005) Selective isolation of members of the Streptomyces violaceoruber clade from soil. FEMS Microbiol Lett 245:321–327

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogenetic Inference Package), version 3.5c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Getha K, Vikineswary S (2002) Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. J Ind Microbiol Biotechnol 28:303–310

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Ferguson EV, Sanglier JJ (1992) Numerical classification and identification of Streptomyces species: a review. Gene 115:225–233

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Kumar Y, Labeda DP, Sembiring L (2007) The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek 92:173–197

    Article  PubMed  Google Scholar 

  • Gupta R, Saxena RK, Chaturvedi P, Virdi JS (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl Bacteriol 78:378–383

    PubMed  CAS  Google Scholar 

  • Harchand RK, Singh S (1997) Extracellular cellulose system of a thermotolerant Streptomycete: Streptomyces albaduncus. Acta Microbiolica Immunol Hunganca 44(3):229–239

    CAS  Google Scholar 

  • Hayakawa M, Yoshida Y, Iimura Y (2004) Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J Appl Microbiol 96:973–981

    Article  PubMed  CAS  Google Scholar 

  • Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates. Microbiology 76:421–428

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132

    Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kelly KL (1958) Centroid notations for the revised ISCC-NBC color name blocks. J Res Nat Bur Standards USA 61:427

    Google Scholar 

  • Kumar Y, Goodfellow M (2008) Five new species of the Streptomyces violaceusniger 16 S rRNA gene clade: Streptomyces castelarensis comb. nov., Streptomyces himastatinicus sp. nov., S. mordarskii sp. nov., S. rapamycinicus sp. nov. and S. ruanii sp. nov. Int J Syst Evol Microbiol 58:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Kumar Y, Aiemsum-Ang P, Ward AC, Goodfellow M (2007) Diversity and geographical distribution of members of the Streptomyces violaceusniger 16 S rRNA gene clade detected by clade-specific PCR primers. FEMS Microbiol Ecol 62:54–63

    Article  PubMed  CAS  Google Scholar 

  • Küster E (1959) Outline of a comparative study of criteria used in characterization of the actinomycetes. Int Bull Bacteriol Nomencl Taxon 9:97–104

    Article  Google Scholar 

  • Küster E, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929

    Article  Google Scholar 

  • Lane DJ (1991) 16 S/23 S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–148

    Google Scholar 

  • Lanoot B, Vancanneyt M, Hoste B, Vandameulebroecke K, Cnockaert MC, Dawyndt P, Liu Z, Huang Y, Swings J (2005) Grouping streptomycetes using 16 S-ITS RFLP fingerprinting. Res Microbiol 156:755–762

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Liu Z, Shi Y, Zhang Y, Zhou Z, Lu Z, Li W, Huang Y, Rodriguez C, Goodfellow M (2005) Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea' to the genus Streptomyces as Streptomyces yanii sp. nov. Int J Syst Evol Microbiol 55:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Loper JE (1998) Role of fluorescent siderophore production in biological control of P. ultimum by P. fluorescens strain. Phytopathology 78:166–172

    Article  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Technol 20:489–493

    Article  CAS  Google Scholar 

  • Manfio GP, Zakrzewska-Czerwinska J, Atalan E, Goodfellow M (1995) Towards minimal standards for the description of Streptomyces species. Biotechnologia 7–8:242–253

    Google Scholar 

  • Merckx R, Dijkra A, Hartog AD, Veen JAV (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol Fertil Soils 5:126–132

    Article  Google Scholar 

  • Paterson E, Rattray EAS, Killham K (1995) Rhizosphere ecophysiology. Encyclopedia of environmental biology, vol 3. Academic, New York, pp 237–245

    Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Pridham TG, Hesseltine CW, Benedict RG (1958) A guide for the classification of Streptomyces according to selected groups. Appl Microbiol 6:52–79

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    PubMed  CAS  Google Scholar 

  • Saintpierre D, Amir H, Pineau R, Sembiring L, Goodfellow M (2003) Streptomyces yatensis sp. nov., a novel bioactive streptomycete isolated from a New-Caledonian ultramafic soil. Antonie van Leeuwenhoek 83:21–26

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. MIDI, Newark

    Google Scholar 

  • Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria. Antonie van Leeuwenhoek 78:353–366

    Article  PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Staneck JL, Roberts G (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    PubMed  CAS  Google Scholar 

  • Strap JL, Crawford DL (2006) Ecology of Streptomyces in soil and rhizosphere. In: Cooper J, Rao JR (eds) Molecular approaches to soil, rhizosphere and plant microorganism analysis. CABI Publishing, Wallingford, UK, pp 166–182

    Chapter  Google Scholar 

  • Suzuki S, Yamamoto K, Okuda T, Nishio M, Nakanishi N, Komatsubara S (2000) Selective isolation and distribution of Actinomadura rugatobispora strains in soil. Actinomycetologica 14:27–33

    Article  Google Scholar 

  • Thomas T, Crawford DL (1998) Cloning of clustered Streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. Can J Microbiol 44:364–372

    Article  PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH et al (2002) Novel plant-microbe rhizosphere involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998a) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Trejo-Estrada SR, Sepulveda SR, Crawford DL (1998b) In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14:865–872

    Article  Google Scholar 

  • Tresner HD, Davies MC, Backus EJ (1961) Microscopy of Streptomyces spore morphology and its role in species differentiation. J Bacteriol 81:70–80

    PubMed  CAS  Google Scholar 

  • Tuncer M, Kuru A, Isikli M, Sahin N, Celenk FG (2004) Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. J Appl Microbiol 97:783–791

    Article  PubMed  CAS  Google Scholar 

  • Tuncer M, Kuru A, Sahin N, Isikli M, Isik K (2009) Production and partial characterization of extracellular peroxidase produced by Streptomyces sp. F6616 isolated in Turkey. Ann Microbiol 59(2):323–334

    Article  CAS  Google Scholar 

  • Upton M (1994) Ecological approaches to the selective isolation of actinomycetes for bioactivity screening. PhD Thesis, University of Newcastle, Newcastle upon Tyne, UK

  • Uren NC (2000) Types, amounts, and possible functions of compunds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 19–40

    Google Scholar 

  • Ward AC, Goodfellow M (2004) Phylogeny and functionality: taxonomy as a roadmap to genes. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, pp 288–313

    Google Scholar 

  • Watson ET, Williams ST (1974) Studies on the ecology of actinomycetes in soil. VII. Actinomycetes in a coastal belt. Soil Biol Biochem 6:43–52

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    PubMed  CAS  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici, 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 4. Williams and Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  • Xu C, Wang L, Cui Q, Huang Y, Liu Z, Zheng G, Goodfellow M (2006) Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Int J Syst Evol Microbiol 56:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Zaehner H, Fiedler H (1995) The need for new antibiotics: possible ways forward. In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspective and future trends. SGM symposium 53. Cambridge University Press, Cambridge, pp 67–85

    Google Scholar 

Download references

Acknowledgements

This research was supported by The Basic Sciences Research Group (TBAG) of Scientific and Technological Research Council of Turkey (TUBITAK; project no. 106T029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevzat Sahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, N., Sazak, A., Güven, K. et al. Diversity of members of the Streptomyces violaceusniger 16S rRNA gene clade in the legumes rhizosphere in Turkey. Ann Microbiol 60, 669–684 (2010). https://doi.org/10.1007/s13213-010-0112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0112-6

Keywords

Navigation