Skip to main content
Log in

Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Erwinia chrysanthemi is a phytopathogenic bacterium causing soft rot disease in several agricultural products. Conventional techniques used in the control of this phytopathology have serious limitations due to the emergence of resistant strains and the undesirable effect on the environment of chemical treatments. In this work, we report the isolation of an actinomycete strain from a Moroccan biotope that inhibits the growth of Erwinia chrysanthemi 3937VIII. PCR amplification and DNA sequencing of the 16 S ribosomal RNA gene allowed the identification of this strain as Streptomyces cinereoruber. The concentrated culture supernatant of this actinomycete strain exhibited activity against the growth of Erwinia chrysanthemi 3937VIII and two Gram-positive bacteria, Staphylococcus aureus and Bacillus amylolitiquefaciens, but had no effect on other Gram-negative bacteria tested (Erwinia carotovora 197stpR, Escherichia coli TG1 and Pseudomonas sp.), suggesting that this actinomycete strain secretes into the extracellular medium a substance that inhibits selectively the growth of other bacteria, especially the phytopathogenic Erwinia chrysanthemi 3937VIII. The antibacterial activity of Streptomyces cinereoruber found in this study highlights the importance of actinomycetes strains as candidates for the biological control of pathogenic bacteria. The identification and characterization of the active substance would open the way for further technological and therapeutic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alivizatos AS, Pantazis S (1992) Preliminary studies on biological control of potato common scab caused by Streptomyces sp. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases progress and challenges for the future, NATO ASI series, vol 230. Kluwer, Dordrecht, pp 85–93

    Google Scholar 

  • Altin N, Bora T (2001) Biological control studies by fluorescent pseudomonads against to Erwinia carotovora subsp. carotovora (Jones) Bergey et al. caused soft rot on potato. Ninth Turkish Phytopathology congress, 3–8 September 2001, Tekirdag, Turkey, pp 104–110

  • Aysan Y (2001) Bacterial stem necrosis of tomato in the greenhouse in the eastern Mediterranean region of turkey. 11th Congress of the Mediterranean Phytopathological Union and 3rd Congress of the Sociedade Portuguesa de Fitopatologia, Evora, Portugal, pp 301–303

  • Aysan Y, Karats A, Cinar O (2003) Biological control of bacterial stem rot cause by Erwinia chrysanthemi on tomato. Crop Prot 22:807–811

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Boudjella H, Bouti K, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2006) Taxonomy and chemical characterization of antibiotics of Streptosporangium Sg10 isolated from Saharan soil. Microbiol Res 161:288–298

    Article  CAS  PubMed  Google Scholar 

  • Chard JM, Van Gardingen J, Graham DC (1991) Biological control of Erwinia disease of potato. In: Biological control of fungal and bacterial pathogens. New approaches in biological control of soilborne disease, vol 30. European Foundation for Plant Pathology Working Group on Biological Control, Copenhagen, Denmark, pp 133–135

  • Chung WC, Huang JW, Huang HC (2005) Formulation of a soil biofungicide for control of damping-off of chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32:287–294

    Article  Google Scholar 

  • Clarridge JE (2004) Impact of 16 S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  CAS  PubMed  Google Scholar 

  • Colyer PD, Mound MS (1984) Bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot diseases. Plant Dis 68:703–706

    Article  Google Scholar 

  • Cook AE, Meyer PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16 S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907–1915

    Article  CAS  PubMed  Google Scholar 

  • Cook KL, Layton AC, Dionisi HM, Fleming JT, Sayler GS (2004) Evaluation of a plasmid-based 16 S-23 S rDNA intergenic spacer region array for analysis of microbial diversity in industrial wastewater. J Microbiol Methods 57:79–93

    Article  CAS  PubMed  Google Scholar 

  • Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the control of plant disease. Annu Rev Phytopathol 26:75–91

    CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J Phytopathol 108:193–206

    Article  Google Scholar 

  • Hommais F, Oger-Desfeux C, Van Gijsegem F, Castang S, Ligori S, Expert D, Nasser W, Reverchon S (2008) PecS Is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol 190:7508–7522

    Article  CAS  PubMed  Google Scholar 

  • INRA (2008) Rapport d'Activités. INRA (Ed) p 28. http://www.terrevie.net/terrevie/pages/juin08/INRArapactivites07.3.pdf

  • Kitouni M, Boudemagh A, Oulmi L, Reghioua S, Boughachiche F, Zerizer H, Hamdiken H, Couble A, Mouniee D, Boulahrouf A, Boiron P (2005) Isolation of actinomycetes producing bioactive substances from water soil and tree bark samples of the north-east of Algeria. J Mycol Med 15:45–51

    Google Scholar 

  • Labeda DP, Shearer MC (1990) Isolation of actinomycetes for biotechnological applications. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. McGraw-Hill, New York

    Google Scholar 

  • Ouhdouch Y, Barakat M, Finanse C (2001) Actinomycetes of Moroccan habitats: Isolation and screening for antifungal activities. Eur J Soil Biol 37:69–74

    Article  Google Scholar 

  • Ozaktan H, Bora T, Sukan S, Sargin S, Sukan FV (1999) Studies on determination on antagonistic potential and biopreparation of some bacteria against the fireblight pathogen. Acta Hortic 489:663–668

    Google Scholar 

  • Perombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–2932

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Shahidi Bonjar GH, Aghighi S (2005) Chitinolytic and microsclerostatic activity of Iranian strains of Streptomyces plicatus and Frankia sp. on olive isolate of Verticillium dahliae. Biotechnology 4(2):108–113

    Article  Google Scholar 

  • Shipley PR, Donnelly CC, Le CH, Bernauer AD, Klegeris A (2009) Antitumor activity of asukamycin, a secondary metabolite from the actinomycete bacterium Streptomyces nodosus subsp. asukaensis. Int J Mol Med 24(5):711–715

    CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Takizawa M, Colwell RR, Hell RT (1993) Isolation and diversity of actinomycetes in the Chesapeake bay. Appl Environ Microbiol 59:997–1002

    PubMed  Google Scholar 

  • Tanii D, Takeuchi T, Horita H (1990) Biological control of scab, black scurf and soft rot of potato by seed tuber bacterization. In: Hornby D (ed) Biological control of soil borne plant pathogens. CAB International, Wallingford, UK, pp 143–164

    Google Scholar 

  • Tu JC (2008) Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J Phytopathol 121:97–102

    Article  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Déry C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  Google Scholar 

  • Vanneste JL, Cornish DA (1995) Development of quantitative bioassay to study the interaction between biological control agents and soft rot Erwinia. Proc 48th NZ Plant Prot Conf 48:354–356

    Google Scholar 

  • Vanneste JL, Yu J, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796

    CAS  PubMed  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces. Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16 S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Zheng Z, Zeng W, Huang Y, Yang Z, Li J, Cai H, Su W (2000) Detection of antitumor and antimicrobial activities in marine organisms associated actinomycetes isolated from the Taiwan strait, China. FEMS Microbiol Lett 188:87–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to O. Zejli, ALC-Fez and Pr. M. Ettayebi for careful reading of the manuscript. This work was supported by grants from University of Sidi mohamed Ben Abdellah-Fès, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El Hassouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Karkouri, A., El Hassani, F.Z., El Mzibri, M. et al. Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease. Ann Microbiol 60, 263–268 (2010). https://doi.org/10.1007/s13213-010-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0036-1

Keywords

Navigation