Skip to main content
Log in

Rapid and Cost-Effective On-site Detection of Plant Viruses Using Personal Glucose Meters Integrated with LAMP and Cascade Enzymatic Reactions

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This study presents a novel method for detecting plant viruses by combining a personal glucose meter (PGM)-based cascade enzymatic reaction (CER) with loop-mediated isothermal amplification (LAMP). This technique exploits the consumption of deoxynucleotides (dNTPs) during the LAMP process as a substrate for CER, leading to a measurable change in glucose concentration. This change can be detected using PGM, enabling the identification of the presence or absence of the target virus. This method provide a more efficient alternative to traditional methods like ELISA and PCR. It overcomes their limitation in terms of laboratory equipment requirement, sensitivity, and on-site applicability. In addition, we also developed a portable diagnostic device that integrates a heating block with a glucose measurement module. By utilizing this device, the rapid and precise detection of various plant viruses, including horseradish latent virus (HRLV), onion yellow dwarf virus (OYDV), soybean yellow common mosaic virus (SYCMV), cnidium vein yellowing virus 1 (CnVYV-1), and perilla mosaic virus (PerMV), successfully achieved within 40 min. This advancement offers a practical and cost-effective solution for managing plant pathogen threats in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hulme, P.E.: Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021)

    Article  Google Scholar 

  2. Liebhold, A.M., Brockerhoff, E.G., Garrett, L.J., Parke, J.L., Britton, K.O.: Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012)

    Article  Google Scholar 

  3. Ivanov, A.V., Safenkova, I.V., Zherdev, A.V., Dzantiev, B.B.: The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plants 10, 2424 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zayan, S.A.: Impact of climate change on plant diseases and IPM strategies. Arab J. Plant Prot. 36, 75–79 (2018)

    Article  Google Scholar 

  5. Hanssen, I.M., Lapidot, M., Thomma, B.P.H.J.: Emerging viral diseases of tomato crops. Mol. Plant Microbe Interact. 23, 539–548 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Caruso, A.G., et al.: Development of an in-field real-time LAMP assay for rapid detection of tomato leaf curl New Delhi virus. Plants 12, 1487 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pallás, V., Sánchez-Navarro, J.A., James, D.: Recent advances on the multiplex molecular detection of plant viruses and viroids. Front. Microbiol.Microbiol. 9, 1–11 (2018)

    Google Scholar 

  8. Kumar, S., Prakash, H.S.: Detection of tobacco mosaic virus and tomato mosaic virus in pepper seeds by enzyme linked immunosorbent assay (ELISA). Arch. Phytopathol. Plant Prot. 49, 59–63 (2016)

    Article  CAS  Google Scholar 

  9. Rettcher, S., et al.: Simple and portable magnetic immunoassay for rapid detection and sensitive quantification of plant viruses. Appl. Environ. Microbiol.Microbiol. 81, 3039–3048 (2015)

    Article  CAS  Google Scholar 

  10. Edwards, M.L., Cooper, J.I.: Plant virus detection using a new form of indirect ELISA. J. Virol. MethodsVirol. Methods 11, 309–319 (1985)

    Article  CAS  Google Scholar 

  11. Waliullah, S., et al.: Development of loop-mediated isothermal amplification assay for rapid detection of cucurbit leaf crumple virus. Int. J. Mol. Sci. 21, 1–18 (2020)

    Article  Google Scholar 

  12. Fang, Y., Ramasamy, R.P.: Current and prospective methods for plant disease detection. Biosensors 5, 537–561 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khater, M., de la Escosura-Muñiz, A., Merkoçi, A.: Biosensors for plant pathogen detection. Biosens. Bioelectron.. Bioelectron. 93, 72–86 (2017)

    Article  CAS  Google Scholar 

  14. Duan, Y., Ge, C., Zhang, X., Wang, J., Zhou, M.A.: rapid detection method for the plant pathogen Sclerotinia sclerotiorum based on loop-mediated isothermal amplification (LAMP). Australas. Plant Pathol.. Plant Pathol. 43, 61–66 (2014)

    Article  CAS  Google Scholar 

  15. Francois, P., et al.: Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. Immunol. Med. Microbiol. 62, 41–48 (2011)

    Article  CAS  Google Scholar 

  16. Ling, K.S., Wechter, W.P., Somai, B.M., Walcott, R.R., Keinath, A.P.: An improved real-time PCR system for broad-spectrum detection of Didymella bryoniae, the causal agent of gummy stem blight of cucurbits. Seed Sci. Technol. 38, 692–703 (2010)

    Article  Google Scholar 

  17. Çelik, A.: A novel technology for the one-step detection of prune dwarf virus: Colorimetric reverse transcription loop-mediated isothermal amplification assay. Crop Prot. 155, 105910 (2022)

    Article  Google Scholar 

  18. Soliman, H., El-Matbouli, M.: Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of viral hemorrhagic septicaemia virus (VHS). Vet. Microbiol.Microbiol. 114, 205–213 (2006)

    Article  CAS  Google Scholar 

  19. Mori, Y., Nagamine, K., Tomita, N., Notomi, T.: Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun.. Biophys. Res. Commun. 289, 150–154 (2001)

    Article  CAS  Google Scholar 

  20. Nagamine, K., Hase, T., Notomi, T.: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S., et al.: Colorimetric detection of staphylococcus aureus based on direct loop-mediated isothermal amplification in combination with lateral flow assay. Biochip J. (2023). https://doi.org/10.1007/s13206-023-00130-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaneko, H., Kawana, T., Fukushima, E., Suzutani, T.: Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. MethodsBiochem. Biophys. Methods 70, 499–501 (2007)

    Article  CAS  Google Scholar 

  23. Kiddle, G., et al.: GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol.Biotechnol. (2012). https://doi.org/10.1186/1472-6750-12-15

    Article  Google Scholar 

  24. Boonham, N., et al.: Development of a real-time RT-PCR assay for the detection of potato spindle tuber viroid. J. Virol. MethodsVirol. Methods 116, 139–146 (2004)

    Article  CAS  Google Scholar 

  25. Jang, M.J., Kim, S.: Inhibition of non-specific amplification in loop-mediated isothermal amplification via tetramethylammonium chloride. Biochip J. 16, 326–333 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hadersdorfer, J., Neumüller, M., Treutter, D., Fischer, T.C.: Fast and reliable detection of Plum pox virus in woody host plants using the Blue LAMP protocol. Ann. Appl. Biol. 159, 456–466 (2011)

    Article  CAS  Google Scholar 

  27. Elvira-González, L., et al.: Fast detection of Southern tomato virus by one-step transcription loop-mediated isothermal amplification (RT-LAMP). J. Virol. MethodsVirol. Methods 241, 11–14 (2017)

    Article  Google Scholar 

  28. Wilisiani, F., et al.: Development of a LAMP assay with a portable device for real-time detection of begomoviruses under field conditions. J. Virol. MethodsVirol. Methods 265, 71–76 (2019)

    Article  CAS  Google Scholar 

  29. Almasi, M.A., Erfan Manesh, M., Jafary, H., Dehabadi, S.M.H.: Visual detection of Potato Leafroll virus by loop-mediated isothermal amplification of DNA with the GeneFinderTM dye. J. Virol. MethodsVirol. Methods 192, 51–54 (2013)

    Article  CAS  Google Scholar 

  30. Keizerweerd, A.T., Chandra, A., Grisham, M.P.: Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane. J. Virol. MethodsVirol. Methods 212, 23–29 (2015)

    Article  CAS  Google Scholar 

  31. Lee, M.S., et al.: One-step reverse transcription loop-mediated isothermal amplification assay for rapid detection of Cymbidium mosaic virus. J. Virol. MethodsVirol. Methods 173, 43–48 (2011)

    Article  CAS  Google Scholar 

  32. Bertacca, S., et al.: Development of a real-time loop-mediated isothermal amplification assay for the rapid detection of olea europaea geminivirus. Plants 11, 660 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Supakitthanakorn, S., et al.: Tobacco mosaic virus infection of chrysanthemums in Thailand: development of colorimetric reverse-transcription loop-mediated isothermal amplification (RT–LAMP) technique for sensitive and rapid detection. Plants 11, 1788 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yilmaz, S., Adkins, S., Batuman, O.: Field-portable, rapid, and low-cost RT-LAMP assay for the detection of tomato chlorotic spot virus. Phytopathology 113, 567–576 (2023)

    Article  CAS  PubMed  Google Scholar 

  35. Çeli̇k, A., et al.: The use of colorimetric loop-mediated isothermal amplification assay for naked-eye detection of bean common mosaic virus. Physiol. Mol. Plant Pathol.Pathol. 125, 102017 (2023)

    Article  Google Scholar 

  36. Taebi, S., Keyhanfar, M., Noorbakhsh, A.: A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. J. Immunol. Methods 458, 26–32 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. Gong, S., Chen, Y., Pan, W., Li, N., Tang, B.: An in vitro site-specific cleavage assay of CRISPR-Cas9 using a personal glucose meter. Chem. Commun.Commun. 56, 8850–8853 (2020)

    Article  CAS  Google Scholar 

  38. Huang, X., et al.: Point-of-care testing of microRNA based on personal glucose meter and dual signal amplification to evaluate drug-induced kidney injury. Anal. Chim. Acta 1112, 72–79 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. Chen, G.Y., Zhang, H., Yang, F.Q.: A simple and portable method for β-Glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal. Chim. Acta 1142, 19–27 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Han, Y.D., Chun, H.J., Yoon, H.C.: Low-cost point-of-care biosensors using common electronic components as transducers. Biochip J. 14, 32–47 (2020)

    Article  CAS  Google Scholar 

  41. Ahn, J.K., Kim, H.Y., Park, K.S., Park, H.G.: A personal glucose meter for label-free and washing-free biomolecular detection. Anal. Chem. 90, 11340–11343 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Ahn, J.K., Kim, H.Y., Lee, C.Y., Park, K.S., Park, H.G.: Label-free and washing-free alkaline phosphatase assay using a personal glucose meter. J. Biol. Eng. 13, 51 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim, H.Y., Park, K.S., Park, H.G.: Glucose oxidase-like activity of cerium oxide nanoparticles: use for personal glucose meter-based label-free target DNA detection. Theranostics 10, 4507–4514 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, H.Y., Song, J., Park, K.S., Park, H.G.: Simple and label-free strategy for terminal transferase assay using a personal glucose meter. Chem. Commun.Commun. 56, 8912–8915 (2020)

    Article  CAS  Google Scholar 

  45. Kim, H.Y., Ahn, J.K., Park, K.S., Park, H.G.: Portable glucose meter-based label-free strategy for target DNA detection. Sens. Actuators, B Chem. 310, 127808 (2020)

    Article  CAS  Google Scholar 

  46. Han, H., Park, J., Ahn, J.K.: Immunoglobulin e detection method based on cascade enzymatic reaction utilizing portable personal glucose meter. Sensors 21, 1–10 (2021)

    Article  CAS  Google Scholar 

  47. Park, J., Han, H., Park, C., Ahn, J.K.: Washing-free and label-free onsite assay for inorganic pyrophosphatase activity using a personal glucose meter. Anal. Chem. 94, 11508–11513 (2022)

    Article  CAS  PubMed  Google Scholar 

  48. Park, J., Han, H., Jeung, J.H., Park, C., Ahn, J.K.: CRISPR/Cas13a-assisted AMP generation for SARS-CoV-2 RNA detection using a personal glucose meter. Biosens. Bioelectron. X 12, 100283 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the supports of the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Crop Viruses and Pests Response Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321104-3).

Author information

Authors and Affiliations

Authors

Contributions

HHG: conceptualization, data curation, formal analysis, methodology, validation, writing—original draft. YCP: data curation, resources. KKK: data curation, formal analysis, resources. HJK: data curation. HKS: formal analysis, resources. JHP: resources, writing—review and editing draft. JSM: methodology, resources. JKA: conceptualization, data curation, funding acquisition, investigation, supervision, writing—review and editing draft.

Corresponding author

Correspondence to Jun Ki Ahn.

Ethics declarations

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 540 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Park, Y.C., Kim, KK. et al. Rapid and Cost-Effective On-site Detection of Plant Viruses Using Personal Glucose Meters Integrated with LAMP and Cascade Enzymatic Reactions. BioChip J (2024). https://doi.org/10.1007/s13206-024-00149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13206-024-00149-z

Keywords

Navigation