Skip to main content
Log in

Integration of an Aptamer-Based Signal-On Probe and a Paper-Based Origami Preconcentrator for Small Molecule Biomarkers Detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Point-of-care testing using paper-based lateral flow assays (LFAs) has emerged as an attractive diagnostic platform. However, detecting small molecules such as cortisol using LFAs is challenging due to limited binding sites and weak signal generation. Here, we report the development of cortisol-specific aptamer-based probes and a paper-based origami preconcentrator (POP) to amplify the probe signal. The cortisol-specific aptamers were conjugated onto gold nanoparticles and hybridized with signal probes to create the cortisol-specific signal-on probe. POP, consisting of patterned layers with convergent wicking zones, induces electrokinetic preconcentration of the released signaling probes. By integrating cortisol-selective aptamer-based probes and POP, we accurately diagnosed cortisol levels within 30 min of signal probe incubation, followed by 10 min of preconcentration. Our sensor was able to detect cortisol levels in the range of 25–1000 ng/mL, with typical cortisol levels in plasma ranging from 40 to 250 ng/mL falling within this range. The successful detection of the wide range of cortisol samples using this approach highlights the potential of this platform as a point-of-care testing tool, particularly for lateral flow assay-based detection of small molecules like cortisol. Our approach offers a convenient and reliable method of cortisol level testing with a portable and accessible diagnosis device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data supporting this study are included within the article and supporting materials.

References

  1. Kim, C., et al.: Nanoelectrokinetic-assisted lateral flow assay for COVID-19 antibody test. Biosens. Bioelectron. 212, 114385 (2022). https://doi.org/10.1016/j.bios.2022.114385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang, N., et al.: Low-cost optical assays for point-of-care diagnosis in resource-limited settings. ACS Sens. 6, 2108–2124 (2021). https://doi.org/10.1021/acssensors.1c00669

    Article  CAS  PubMed  Google Scholar 

  3. Kim, H.T., Jin, E., Lee, M.H.: Portable chemiluminescence-based lateral flow assay platform for the detection of cortisol in human serum. Biosensors (Basel). (2021). https://doi.org/10.3390/bios11060191

    Article  PubMed  PubMed Central  Google Scholar 

  4. Apilux, A., Rengpipat, S., Suwanjang, W., Chailapakul, O.: Development of competitive lateral flow immunoassay coupled with silver enhancement for simple and sensitive salivary cortisol detection. EXCLI J. 17, 1198–1209 (2018). https://doi.org/10.17179/excli2018-1824

    Article  PubMed  PubMed Central  Google Scholar 

  5. Govardhanagiri, S., Bethi, S., Nagaraju, G.P.: Breaking tolerance to pancreatic cancer unresponsiveness to chemotherapy (ed Ganji Purnachandra Nagaraju), vol. 5, pp. 117–131. Academic Press (2019)

    Book  Google Scholar 

  6. Carter, J.A., Triplett, E., Striemer, C.C., Miller, B.L.: A label-free, multiplex competitive assay for small molecule pollutants. Biosens. Bioelectron. 77, 1–6 (2016). https://doi.org/10.1016/j.bios.2015.08.064

    Article  CAS  PubMed  Google Scholar 

  7. Posthuma-Trumpie, G.A., Korf, J., van Amerongen, A.: Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 569–582 (2009). https://doi.org/10.1007/s00216-008-2287-2

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, C., et al.: Dual-competitive lateral flow aptasensor for detection of aflatoxin B(1) in food and feedstuffs. J. Hazard Mater. 344, 249–257 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X., Cohen, L., Wang, J., Walt, D.R.: Competitive immunoassays for the detection of small molecules using single molecule arrays. J. Am. Chem. Soc. 140, 18132–18139 (2018). https://doi.org/10.1021/jacs.8b11185

    Article  CAS  PubMed  Google Scholar 

  10. Tran, T.T.T., Delgado, A., Jeong, S.: Organ-on-a-chip: the future of therapeutic aptamer research? BioChip J. 15, 109–122 (2021). https://doi.org/10.1007/s13206-021-00016-1

    Article  CAS  Google Scholar 

  11. Kang, B., et al.: Magnetic nanochain-based smart drug delivery system with remote tunable drug release by a magnetic field. BioChip J. 16, 280–290 (2022). https://doi.org/10.1007/s13206-022-00072-1

    Article  CAS  Google Scholar 

  12. Nguyen, T.T.-Q., Kim, E.R., Gu, M.B.: A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 198, 113835 (2022). https://doi.org/10.1016/j.bios.2021.113835

    Article  CAS  PubMed  Google Scholar 

  13. Freitas, R.C., et al.: Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. J. Electroanal. Chem. 897, 115550 (2021). https://doi.org/10.1016/j.jelechem.2021.115550

    Article  CAS  Google Scholar 

  14. Xu, L., et al.: Binding-induced DNA dissociation assay for small molecules: sensing aflatoxin B1. ACS Sens. 3, 2590–2596 (2018). https://doi.org/10.1021/acssensors.8b00975

    Article  CAS  PubMed  Google Scholar 

  15. Tao, Y., Chen, L., Pan, M., Zhu, F., Zhu, D.: Tailored biosensors for drug screening, efficacy assessment, and toxicity evaluation. ACS Sens. 6, 3146–3162 (2021). https://doi.org/10.1021/acssensors.1c01600

    Article  CAS  PubMed  Google Scholar 

  16. Han, S.I., et al.: Electrokinetic size-based spatial separation of micro/nanospheres using paper-based 3D origami preconcentrator. Anal. Chem. 91, 10744–10749 (2019). https://doi.org/10.1021/acs.analchem.9b02201

    Article  CAS  PubMed  Google Scholar 

  17. Kim, H., et al.: Origami-paper-based device for microvesicle/exosome preconcentration and isolation. Lab. Chip 19, 3917–3921 (2019). https://doi.org/10.1039/C9LC00796B

    Article  CAS  PubMed  Google Scholar 

  18. Dickstein, G., et al.: Adrenocorticotropin stimulation test: effects of basal cortisol level, time of day, and suggested new sensitive low dose test*. J. Clin. Endocrinol. Metab. 72, 773–778 (1991). https://doi.org/10.1210/jcem-72-4-773

    Article  CAS  PubMed  Google Scholar 

  19. Tang, R.H., et al.: A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim. Acta 186, 521 (2019). https://doi.org/10.1007/s00604-019-3626-z

    Article  CAS  PubMed  Google Scholar 

  20. Kuswandi, B., Ensafi, A.A.: Perspective—paper-based biosensors: trending topic in clinical diagnostics developments and commercialization. J. Electrochem. Soc. (2019). https://doi.org/10.1149/2.0092003jes

    Article  Google Scholar 

  21. Zhao, W., Ali, M.M., Aguirre, S.D., Brook, M.A., Li, Y.: Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem. 80, 8431–8437 (2008). https://doi.org/10.1021/ac801008q

    Article  CAS  PubMed  Google Scholar 

  22. Mieloszyk, J., Drabent, R., Siódmiak, J.: Phosphorescence and fluorescence of poly(vinyl alcohol) films. J. Appl. Polym. Sci. 34, 1577–1580 (1987). https://doi.org/10.1002/app.1987.070340418

    Article  CAS  Google Scholar 

  23. Weng, X., Ahmed, S.R., Neethirajan, S.: A nanocomposite-based biosensor for bovine haptoglobin on a 3D paper-based analytical device. Sens. Actuat. B Chem. 265, 242–248 (2018). https://doi.org/10.1016/j.snb.2018.03.061

    Article  CAS  Google Scholar 

  24. Park, S.J., et al.: PCR-like performance of rapid test with permselective tunable nanotrap. Nat. Commun. 14, 1520 (2023). https://doi.org/10.1038/s41467-023-37018-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, J., et al.: Affordable on-site COVID-19 test using non-powered preconcentrator. Biosens. Bioelectron. 222, 114965 (2023). https://doi.org/10.1016/j.bios.2022.114965

    Article  CAS  PubMed  Google Scholar 

  26. Russell, E., Koren, G., Rieder, M., Van Uum, S.H.M.: The detection of cortisol in human sweat: implications for measurement of cortisol in hair. Therap. Drug Monit. 36, 30–34 (2014)

    Article  CAS  Google Scholar 

  27. Phillips, D.I.W., et al.: Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757–760 (1998). https://doi.org/10.1210/jcem.83.3.4634

    Article  CAS  PubMed  Google Scholar 

  28. Vining, R.F., McGinley, R.A., Maksvytis, J.J., Ho, K.Y.: Salivary cortisol: a better measure of adrenal cortical function than serum cortisol. Ann. Clin. Biochem. 20, 329–335 (1983). https://doi.org/10.1177/000456328302000601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Korean government (MSIT) (No. 2023M3E5E3080743) and the Hyundai Motor Chung Mong-Koo Foundation. J.H. Lee was supported by a research grant from Kwangwoon University in 2023.

Author information

Authors and Affiliations

Authors

Contributions

NEL and JHH: conceptualization, methodology, and writing of the manuscript. SL, YKY, KHK, JSP and CK: perform formal analysis and advice on result analysis. JY, DSY and JHL: conceptualize the approach, review and edit the manuscript.

Corresponding authors

Correspondence to Junghyo Yoon, Dae Sung Yoon or Jeong Hoon Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.E., Hong, J.H., Lee, S. et al. Integration of an Aptamer-Based Signal-On Probe and a Paper-Based Origami Preconcentrator for Small Molecule Biomarkers Detection. BioChip J 17, 439–446 (2023). https://doi.org/10.1007/s13206-023-00119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00119-x

Keywords

Navigation