Skip to main content
Log in

DNA-Wrapped CNT Sensor for Small Nucleic Acid Detection: Influence of Short Complementary Sequence

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are versatile materials that act as natural fluorescence quenchers and double scaffolds for DNA that can wrap around them based on π–π stacking. We exploited these properties of CNTs to develop a hybridization-based sensor for the detection of microRNA. We designed a fluorescein amidite (FAM)-labeled single-stranded oligonucleotide containing a CNT binding region (Poly T) followed by a sequence complementary to the target nucleic acid (probe sequence). As the DNA wraps around a CNT, FAM fluorescence is quenched in the absence of the target, whereas in the presence of the target, fluorescence emission is obtained. Experimentally, we found that one of the major issues with this sensor is its compromised sensitivity due to competition for adsorption of the probe DNA onto the CNT versus that of hybridization with the target DNA. To overcome this, we introduced a short complementary sequence (SCS) that binds to the probe sequence and found that it significantly improved the limit of detection of the sensor approximately 25-fold. To gain further insights into the mechanism of SCS in improving the sensor performance, we performed molecular dynamics (MD)-based simulations. Based on hybridization energy calculations performed using MM-GBSA, we found that the position of the SCS is key to shaping the binding affinity of the probe to the CNT. The MD-based calculations were validated using experimental results by comparing the sensor’s experimental limit of detection and the hybridization energy obtained computationally. Finally, we demonstrated the applicability of this sensor for the experimental detection of the cervical cancer-related biomarker miR-21-5p in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim, J., Park, M.: Recent progress in electrochemical immunosensors. Biosensors 11, 360 (2021)

    Article  CAS  Google Scholar 

  2. Park, M., Heo, Y.J.: Biosensing technologies for chronic diseases. BioChip J. 15, 1–13 (2021)

    Article  CAS  Google Scholar 

  3. Cho, S.-Y., Jin, X., Gong, X., Yang, S., Cui, J., Strano, M.S.: Antibody-free rapid detection of SARS-CoV-2 proteins using corona phase molecular recognition to accelerate development time. Anal. Chem. 93, 14685–14693 (2021)

    Article  CAS  Google Scholar 

  4. Ferrier, D.C., Honeychurch, K.C.: Carbon nanotube (CNT)-based biosensors. Biosensors 11, 486 (2021)

    Article  CAS  Google Scholar 

  5. Lee, W.S., Ahn, J., Jung, S., Lee, J., Kang, T., Jeong, J.: Biomimetic nanopillar-based biosensor for label-free detection of Influenza A virus. BioChip J. 15, 260–267 (2021)

    Article  CAS  Google Scholar 

  6. Baek, J.M., Ryu, Y.-S.: Surface sensitive analysis device using model membrane and challenges for biosensor-chip. BioChip J. 14, 110–123 (2020)

    Article  CAS  Google Scholar 

  7. Li, C., Shi, G.: Carbon nanotube-based fluorescence sensors. J. Photochem. Photobiol. C: Photochem. Rev. 19, 20–34 (2014)

    Article  CAS  Google Scholar 

  8. Kruss, S., Hilmer, A.J., Zhang, J., Reuel, N.F., Mu, B., Strano, M.S.: Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65, 1933–1950 (2013)

    Article  CAS  Google Scholar 

  9. Kim, J., Hwang, E.-S.: Multiplexed diagnosis of four serotypes of dengue virus by real-time RT-PCR. BioChip J. 14, 421–428 (2020)

    Article  CAS  Google Scholar 

  10. Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002)

    Article  CAS  Google Scholar 

  11. Zhu, Z., Yang, R., You, M., Zhang, X., Wu, Y., Tan, W.: Single-walled carbon nanotube as an effective quencher. Anal. Bioanal. Chem. 396, 73–83 (2010)

    Article  CAS  Google Scholar 

  12. Swathi, R.S., Sebastian, K.L.: Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008)

    Article  CAS  Google Scholar 

  13. Murakami, H., Nomura, T., Nakashima, N.: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481–485 (2003)

    Article  CAS  Google Scholar 

  14. Fowler, P., Ceulemans, A.: Electron deficiency of the fullerenes. J. Phys. Chem. 99, 508–510 (1995)

    Article  CAS  Google Scholar 

  15. Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)

    Article  CAS  Google Scholar 

  16. Tu, X., Manohar, S., Jagota, A., Zheng, M.: DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009)

    Article  CAS  Google Scholar 

  17. Harvey, J.D., Jena, P.V., Baker, H.A., Zerze, G.H., Williams, R.M., Galassi, T.V., Roxbury, D., Mittal, J., Heller, D.A.: A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng. 1, 0041 (2017)

    Article  CAS  Google Scholar 

  18. Kim, K.I., Yoon, S., Chang, J., Lee, S., Cho, H.H., Jeong, S.H., Jo, K., Lee, J.H.: Multifunctional heterogeneous carbon nanotube nanocomposites assembled by DNA-binding peptide anchors. Small 16, e1905821 (2020)

    Article  Google Scholar 

  19. Du, Y., Dong, S.: Nucleic acid biosensors: recent advances and perspectives. Anal. Chem. 89, 189–215 (2017)

    Article  CAS  Google Scholar 

  20. Suresh, R.R., Kulandaisamy, A.J., Nesakumar, N., Nagarajan, S., Lee, J.H., Rayappan, J.B.B.: Graphene quantum dots – hydrothermal green synthesis, material characterization and prospects for cervical cancer diagnosis applications: a review. ChemistrySelect 7, e202200655 (2022)

    Article  CAS  Google Scholar 

  21. Lim, H., Chang, J., Kim, K.I., Moon, Y., Lee, S., Lee, B., Lee, J.H., Lee, J.: On-chip selection of adenosine aptamer using graphene oxide-coated magnetic nanoparticles. Biomicrofluidics 16, 044102 (2022)

    Article  CAS  Google Scholar 

  22. Na, H., Kang, B.-H., Ku, J., Kim, Y., Jeong, K.-H.: On-chip paper electrophoresis for ultrafast screening of infectious diseases. BioChip J. 15, 305–311 (2021)

    Article  CAS  Google Scholar 

  23. Tran, T.T.T., Delgado, A., Jeong, S.: Organ-on-a-chip: the future of therapeutic aptamer research? BioChip J. 15, 109–122 (2021)

    Article  CAS  Google Scholar 

  24. Yoo, H., Jo, H., Oh, S.S.: Detection and beyond: challenges and advances in aptamer-based biosensors. Mater. Adv. 1, 2663–2687 (2020)

    Article  CAS  Google Scholar 

  25. Heo, J.H., Cho, H.H., Lee, J.H.: Surfactant-free nanoparticle–DNA complexes with ultrahigh stability against salt for environmental and biological sensing. Analyst 139, 5936–5944 (2014)

    Article  CAS  Google Scholar 

  26. Lee, J.H., Wang, Z., Liu, J., Lu, Y.: Highly sensitive and selective colorimetric sensors for uranyl (UO22+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 130, 14217–14226 (2008)

    Article  CAS  Google Scholar 

  27. Wang, H., Peng, R., Wang, J., Qin, Z., Xue, L.: Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin. Epigenetics 10, 59 (2018)

    Article  Google Scholar 

  28. Kim, D.H., Paek, S.H., Choi, D.Y., Lee, M.K., Park, J.-N., Cho, H.-M., Paek, S.-H.: Real-time monitoring of biomarkers in serum for early diagnosis of target disease. BioChip J. 14, 2–17 (2020)

    Article  CAS  Google Scholar 

  29. Paek, S.-H.: Real-time monitoring of biomarkers: current status and future perspectives. BioChip J. 14, 1 (2020)

    Article  CAS  Google Scholar 

  30. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., Tewari, M.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 105, 10513–10518 (2008)

    Article  CAS  Google Scholar 

  31. Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., Wang, K.: The microRNA spectrum in 12 body fluids. Clin Chem. 56, 1733–1741 (2010)

    Article  CAS  Google Scholar 

  32. Deng, Z.M., Chen, G.H., Dai, F.F., Liu, S.Y., Yang, D.Y., Bao, A.Y., Cheng, Y.X.: The clinical value of miRNA-21 in cervical cancer: a comprehensive investigation based on microarray datasets. PLoS ONE 17, e0267108 (2022)

    Article  CAS  Google Scholar 

  33. Cai, L., Wang, W., Li, X., Dong, T., Zhang, Q., Zhu, B., Zhao, H., Wu, S.: MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the Von Hippel-Lindau tumor suppressor. Oncol. Lett 15, 5213–5219 (2018)

    Google Scholar 

  34. Kannappan, S., Lee, J.H., Lakshmanakumar, M., Rayappan, J.B.B., Nesakumar, N.: Potential biomarkers for early diagnosis of cervical cancer. In: Rayappan, J.B.B., Lee, J.H. (eds.) Biomarkers and biosensors for cervical cancer diagnosis, pp. 23–46. Springer, Singapore (2021)

    Chapter  Google Scholar 

  35. Kim, H., Huh, H.J., Park, E., Chung, D.-R., Kang, M.: Multiplex molecular point-of-care test for syndromic infectious diseases. BioChip J. 15, 14–22 (2021)

    Article  CAS  Google Scholar 

  36. Torre, L.A., Siegel, R.L., Ward, E.M., Jemal, A.: Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol. Biomarkers Prev. 25, 16–27 (2016)

    Article  Google Scholar 

  37. Guerrero, J.M., Aguirre, F.S., Mota, M.L., Carrillo, A.: Advances for the development of in vitro immunosensors for multiple sclerosis diagnosis. BioChip J. 15, 205–215 (2021)

    Article  CAS  Google Scholar 

  38. Park, S., Eom, K., Kim, J., Bang, H., Wang, H.Y., Ahn, S., Kim, G., Jang, H., Kim, S., Lee, D., Park, K.H., Lee, H.: MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer 17, 658 (2017)

    Article  Google Scholar 

  39. Li, S., Olson, W.K., Lu, X.-J.: Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019)

    Article  CAS  Google Scholar 

  40. Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., Ferrin, T.E.: UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021)

    Article  CAS  Google Scholar 

  41. Choi, Y.K., Kern, N.R., Kim, S., Kanhaiya, K., Afshar, Y., Jeon, S.H., Jo, S., Brooks, B.R., Lee, J., Tadmor, E.B., Heinz, H., Im, W.: CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems. J Chem Theory Comput. 18, 479–493 (2022)

    Article  CAS  Google Scholar 

  42. Jo, S., Kim, T., Iyer, V.G., Im, W.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)

    Article  CAS  Google Scholar 

  43. Frey, J. T. & Doren, D. J. TubeGen 3.4, <http://turin.nss.udel.edu/research/tubegenonline.html> (2011)

  44. Ghosh, S., Patel, N., Chakrabarti, R.: Probing the salt concentration dependent nucleobase distribution in a single-stranded DNA–single-walled carbon nanotube hybrid with molecular dynamics. J. Phys. Chem. B 120, 455–466 (2016)

    Article  CAS  Google Scholar 

  45. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.: GROMACS: fast, flexible, and free. J Comput Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  46. Bjelkmar, P., Larsson, P., Cuendet, M.A., Hess, B., Lindahl, E.: Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466 (2010)

    Article  CAS  Google Scholar 

  47. Beglov, D., Roux, B.: Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994)

    Article  CAS  Google Scholar 

  48. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  49. Schrodinger, LLC.: The PyMOL Molecular Graphics System, Version 1.8 (2015)

  50. Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E.: gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17, 6281–6291 (2021)

    Article  Google Scholar 

  51. Jung, S., Cha, M., Park, J., Jeong, N., Kim, G., Park, C., Ihm, J., Lee, J.: dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing. J. Am. Chem. Soc. 132, 10964–10966 (2010)

    Article  CAS  Google Scholar 

  52. Johnson, R.R., Johnson, A.T.C., Klein, M.L.: Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 8, 69–75 (2008)

    Article  CAS  Google Scholar 

  53. Jeng, E.S., Barone, P.W., Nelson, J.D., Strano, M.S.: Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. Small 3, 1602–1609 (2007)

    Article  CAS  Google Scholar 

  54. Shankar, A., Mittal, J., Jagota, A.: Binding between DNA and carbon nanotubes strongly depends upon sequence and chirality. Langmuir 30, 3176–3183 (2014)

    Article  CAS  Google Scholar 

  55. Johnson, R.R., Johnson, A.T.C., Klein, M.L.: The nature of DNA-base–carbon-nanotube interactions. Small 6, 31–34 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support received from the National Research Foundation (NRF) of Korea for the Basic Science Research Program (NRF-2019R1A6A1A03033215) and the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant (2020R1A6C103B101) funded by the Ministry of Education. This research was also supported by the National Research Foundation (NRF) of Korea for Bio & Medical Technology Development Program (NRF-2022M3A9G8017220) funded by the Ministry of Science & ICT. The authors are grateful to the Ministry of Human Resource Development, Government of India, for financial support through the Scheme for Promotion of Academic and Research Collaboration (SPARC) project “SPARC/2018-19/P402/SL”. Shrute Kannappan appreciates Sungkyunkwan University for the SKKU Research Matters Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyeong Kyu Kim, John Bosco Balaguru Rayappan or Jung Heon Lee.

Ethics declarations

Conflict of Interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannappan, S., Chang, J., Sundharbaabu, P.R. et al. DNA-Wrapped CNT Sensor for Small Nucleic Acid Detection: Influence of Short Complementary Sequence. BioChip J 16, 490–500 (2022). https://doi.org/10.1007/s13206-022-00088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00088-7

Keywords

Navigation