Skip to main content
Log in

Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

One of the leading challenges facing the pharmaceutical industry today is the ‘high attrition rate problem’, with a large number of drug candidates being abandoned before reaching the clinical stage. The high failure rate is not only costly for the pharmaceutical industry but also hinders the access of patients to better treatment options. This ever-widening gap can be attributed to the current in-vitro and animal testing techniques for predicting human responses to drug candidates. Two-dimensional (2D) in-vitro cell culture fails to recapitulate key physical and biochemical cues while phylogenetic differences between animal models and humans in key physiological systems make data generated by these platforms unreliable. There have been several solutions proposed but one that has been gaining a lot of prominence are microfluidic-based microsystems able to mimic organs, called ‘Organ-On-A-Chip’ devices and is built upon the principles of microfluidics, material science, and cell biology. Here we delve into the ongoing research involving this platform demonstrating its key strengths and the application of this technology in several key stages of drug discovery such as target identification and high throughput screening. We also discuss the potential, future, and key obstacles that lie in the universal adoption of this technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ledford, H.: Translational research: 4 ways to fix the clinical trial. Nature 477(7366), 526–528 (2011). https://doi.org/10.1038/477526a

    Article  CAS  PubMed  Google Scholar 

  2. Wysowski, D.K., Swartz, L.: Adverse drug event surveillance and drug withdrawals in the United States, 1969–2002: the importance of reporting suspected reactions. Arch Intern Med 165(12), 1363–1369 (2005). https://doi.org/10.1001/archinte.165.12.1363

    Article  PubMed  Google Scholar 

  3. Schuh, J.C.L.: Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol 32(Suppl 1), 53–66 (2004). https://doi.org/10.1080/01926230490424770

    Article  CAS  PubMed  Google Scholar 

  4. Sena, E.S., van der Worp, H.B., Bath, P.M.W., Howells, D.W., Macleod, M.R.: Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol 8(3), e1000344 (2010). https://doi.org/10.1371/journal.pbio.1000344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Gawrylewski, “The trouble with animal models,” Scientist (Philadelphia, Pa.), vol. 21, pp. 45–51, Jul. 2007.

  6. Chesler, E.J., Wilson, S.G., Lariviere, W.R., Rodriguez-Zas, S.L., Mogil, J.S.: Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci. Biobehav. Rev. 26(8), 907–923 (2002). https://doi.org/10.1016/S0149-7634(02)00103-3

    Article  PubMed  Google Scholar 

  7. Landhuis, E.: Lab Mice Are Too Clean. Sci Am 315(1), 12–13 (2016). https://doi.org/10.1038/scientificamerican0716-12

    Article  PubMed  Google Scholar 

  8. Simon, J.-C., Marchesi, J.R., Mougel, C., Selosse, M.-A.: Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7(1), 5 (2019). https://doi.org/10.1186/s40168-019-0619-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006). https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  10. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3), 519–560 (1995). https://doi.org/10.1152/physrev.1995.75.3.519

    Article  CAS  PubMed  Google Scholar 

  11. Redfern, W., Ewart, L., Hammond, T., Bialecki, R., Kinter, L., Lindgren, S.: Impact and frequency of different toxicities throughout the pharmaceutical life cycle. The Toxicologist 114, 34 (2010)

    Google Scholar 

  12. A. Kouli, K. M. Torsney, and W.-L. Kuan, “Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis,” in Parkinson’s Disease: Pathogenesis and Clinical Aspects, T. B. Stoker and J. C. Greenland, Eds. Brisbane (AU). New York: Codon Publications, 2018. Accessed 29 Nov 2020

  13. Kane, K., et al.: Automated microuidic cell culture of stem cell derived dopaminergic neurons in Parkinson’s disease. Research (2018). https://doi.org/10.1101/209957

    Article  Google Scholar 

  14. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3), 186–191 (2007). https://doi.org/10.1016/j.jalz.2007.04.381

    Article  PubMed  Google Scholar 

  15. Lahiri, D.K., Farlow, M.R., Greig, N.H., Sambamurti, K.: Current drug targets for Alzheimer’s disease treatment. Drug Dev Res 56(3), 267–281 (2002). https://doi.org/10.1002/ddr.10081

    Article  CAS  Google Scholar 

  16. Lee, J.S., Ryu, J., Park, C.B.: High-throughput analysis of Alzheimer’s β-amyloid aggregation using a microfluidic self-assembly of monomersf. Anal. Chem. 81(7), 2751–2759 (2009). https://doi.org/10.1021/ac802701z

    Article  CAS  PubMed  Google Scholar 

  17. Bush, A.I.: The metallobiology of Alzheimer’s disease. Trends Neurosci 26(4), 207–214 (2003). https://doi.org/10.1016/S0166-2236(03)00067-5

    Article  CAS  PubMed  Google Scholar 

  18. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., Markesbery, W.R.: Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1), 47–52 (1998). https://doi.org/10.1016/s0022-510x(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  19. House, E., Collingwood, J., Khan, A., Korchazkina, O., Berthon, G., Exley, C.: Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6(3), 291–301 (2004). https://doi.org/10.3233/jad-2004-6310

    Article  CAS  PubMed  Google Scholar 

  20. Park, J., Lee, B.K., Jeong, G.S., Hyun, J.K., Lee, C.J., Lee, S.-H.: Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15(1), 141–150 (2015). https://doi.org/10.1039/C4LC00962B

    Article  CAS  PubMed  Google Scholar 

  21. Burbach, J.P.H.: What are neuropeptides? Methods Mol Biol 789, 1–36 (2011). https://doi.org/10.1007/978-1-61779-310-3_1

    Article  CAS  PubMed  Google Scholar 

  22. Croushore, C.A., Supharoek, S., Lee, C.Y., Jakmunee, J., Sweedler, J.V.: Microfluidic device for the selective chemical stimulation of neurons and characterization of peptide release with mass spectrometry. Anal Chem 84(21), 9446–9452 (2012). https://doi.org/10.1021/ac302283u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong, M., Lee, C.Y., Croushore, C.A., Sweedler, J.V.: Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. Lab Chip 12(11), 2037–2045 (2012). https://doi.org/10.1039/C2LC21085A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rubakhin, S.S., Sweedler, J.V.: Quantitative measurements of cell-cell signaling peptides with single-cell MALDI MS. Anal Chem 80(18), 7128–7136 (2008). https://doi.org/10.1021/ac8010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zarei, S., et al.: A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 6, 171 (2015). https://doi.org/10.4103/2152-7806.169561

    Article  PubMed  PubMed Central  Google Scholar 

  26. Voutsinos-Porche, B., et al.: Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37(2), 275–286 (2003). https://doi.org/10.1016/s0896-6273(02)01170-4

    Article  CAS  PubMed  Google Scholar 

  27. Scott, S., et al.: Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9(1), 4–15 (2008). https://doi.org/10.1080/17482960701856300

    Article  CAS  PubMed  Google Scholar 

  28. O’Connor, W.T., Smyth, A., Gilchrist, M.D.: Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130(2), 106–113 (2011). https://doi.org/10.1016/j.pharmthera.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  29. Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T., Eggan, K.: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5), 608–614 (2007). https://doi.org/10.1038/nn1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mullett, S.J., Di Maio, R., Greenamyre, J.T., Hinkle, D.A.: DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci 49(3), 507–511 (2013). https://doi.org/10.1007/s12031-012-9904-4

    Article  CAS  PubMed  Google Scholar 

  31. Kunze, A., Lengacher, S., Dirren, E., Aebischer, P., Magistretti, P.J., Renaud, P.: Astrocyte–neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr. Biol. 5(7), 964–975 (2013). https://doi.org/10.1039/C3IB40022K

    Article  CAS  Google Scholar 

  32. Chaffer, C.L., Weinberg, R.A.: A perspective on cancer cell metastasis. Science 331(6024), 1559–1564 (2011). https://doi.org/10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  33. Chambers, A.F., Groom, A.C., MacDonald, I.C.: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8), 563–572 (2002). https://doi.org/10.1038/nrc865

    Article  CAS  PubMed  Google Scholar 

  34. Naumov, G.N., et al.: Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12), 1835–1842 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Stoletov, K., et al.: Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13), 2332–2341 (2010). https://doi.org/10.1242/jcs.069443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bersini, S., et al.: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8), 2454–2461 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.050

    Article  CAS  PubMed  Google Scholar 

  37. Krishna, R., Mayer, L.D.: Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11(4), 265–283 (2000). https://doi.org/10.1016/s0928-0987(00)00114-7

    Article  CAS  PubMed  Google Scholar 

  38. Tatosian, D.A., Shuler, M.L.: A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol Bioeng 103(1), 187–198 (2009). https://doi.org/10.1002/bit.22219

    Article  CAS  PubMed  Google Scholar 

  39. Vidi, P.-A., et al.: Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip 14(1), 172–177 (2014). https://doi.org/10.1039/c3lc50819f

    Article  CAS  PubMed  Google Scholar 

  40. Sobrino, A., et al.: 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6, 31589 (2016). https://doi.org/10.1038/srep31589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Businaro, L., et al.: Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13(2), 229–239 (2013). https://doi.org/10.1039/c2lc40887b

    Article  CAS  PubMed  Google Scholar 

  42. Kalchman, J., et al.: A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid Nanofluid 14(6), 969–981 (2013). https://doi.org/10.1007/s10404-012-1104-6

    Article  CAS  Google Scholar 

  43. Wang, L., et al.: Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironment. Lab Chip 13(4), 695–705 (2013). https://doi.org/10.1039/C2LC40661F

    Article  CAS  PubMed  Google Scholar 

  44. Mannino, D.M., Buist, A.S.: Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589), 765–773 (2007). https://doi.org/10.1016/S0140-6736(07)61380-4

    Article  PubMed  Google Scholar 

  45. Erle, D.J., Sheppard, D.: The cell biology of asthma. J Cell Biol 205(5), 621–631 (2014). https://doi.org/10.1083/jcb.201401050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blume, C., Davies, D.E.: In vitro and ex vivo models of human asthma. Eur J Pharm Biopharm 84(2), 394–400 (2013). https://doi.org/10.1016/j.ejpb.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  47. Corry, D.B., Irvin, C.G.: Promise and pitfalls in animal-based asthma research. Immunol Res 35(3), 279–294 (2006). https://doi.org/10.1385/IR:35:3:279

    Article  CAS  PubMed  Google Scholar 

  48. Humayun, M., Chow, C.-W., Young, E.W.K.: Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 18(9), 1298–1309 (2018). https://doi.org/10.1039/c7lc01357d

    Article  CAS  PubMed  Google Scholar 

  49. Stucki, A.O., et al.: A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15(5), 1302–1310 (2015). https://doi.org/10.1039/c4lc01252f

    Article  CAS  PubMed  Google Scholar 

  50. Benam, K.H., et al.: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13(2), 151–157 (2016). https://doi.org/10.1038/nmeth.3697

    Article  CAS  PubMed  Google Scholar 

  51. Eisenstein, E.L., Lemons, P.W., Tardiff, B.E., Schulman, K.A., Jolly, M.K., Califf, R.M.: Reducing the costs of phase III cardiovascular clinical trials. Am Heart J 149(3), 482–488 (2005). https://doi.org/10.1016/j.ahj.2004.04.049

    Article  PubMed  Google Scholar 

  52. Agarwal, A., Goss, J.A., Cho, A., McCain, M.L., Parker, K.K.: Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18), 3599–3608 (2013). https://doi.org/10.1039/c3lc50350j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qian, F., et al.: Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip 17(10), 1732–1739 (2017). https://doi.org/10.1039/C7LC00210F

    Article  CAS  PubMed  Google Scholar 

  54. McCain, M.L., Sheehy, S.P., Grosberg, A., Goss, J.A., Parker, K.K.: Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. PNAS 110(24), 9770–9775 (2013). https://doi.org/10.1073/pnas.1304913110

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, G., et al.: Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6), 616–623 (2014). https://doi.org/10.1038/nm.3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature 358, 6383 (1992). https://doi.org/10.1038/358209a0

    Article  Google Scholar 

  57. Yt, L., Kd, L., Bh, C.: Immobilization of histidine-tagged proteins by magnetic nanoparticles encapsulated with nitrilotriacetic acid (NTA)-phospholipids micelle. Biochem Biophys Res Commun. 344(3), 926–930 (2006). https://doi.org/10.1016/j.bbrc.2006.03.209

    Article  CAS  Google Scholar 

  58. Mp, M., Airo, B.: A protein-coated magnetic beads as a tool for the rapid drug-protein binding study. J Pharm Biomed Anal 52(3), 420–424 (2009). https://doi.org/10.1016/j.jpba.2009.06.023

    Article  CAS  Google Scholar 

  59. Bendre, A., Bhat, M.P., Lee, K.-H., Altalhi, T., Alruqi, M.A., Kurkuri, M.: Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Materials Today Advances 13, 100205 (2022). https://doi.org/10.1016/j.mtadv.2022.100205

    Article  CAS  Google Scholar 

  60. Lombardi, D., Dittrich, P.S.: Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions. Anal Bioanal Chem 399(1), 347–352 (2011). https://doi.org/10.1007/s00216-010-4302-7

    Article  CAS  PubMed  Google Scholar 

  61. Niewoehner, J., et al.: Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81(1), 49–60 (2014). https://doi.org/10.1016/j.neuron.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  62. Wevers, N.R., et al.: A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15(1), 23 (2018). https://doi.org/10.1186/s12987-018-0108-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sano, Y., et al.: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 225, 519–528 (2010). https://doi.org/10.1002/jcp.22232

    Article  CAS  PubMed  Google Scholar 

  64. Sano, Y., et al.: Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol 4(1), 92–103 (2013). https://doi.org/10.1111/cen3.12001

    Article  CAS  Google Scholar 

  65. Gao, D., Liu, H., Lin, J.-M., Wang, Y., Jiang, Y.: Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13(5), 978–985 (2013). https://doi.org/10.1039/c2lc41215b

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H.J., Huh, D., Hamilton, G., Ingber, D.E.: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12), 2165–2174 (2012). https://doi.org/10.1039/C2LC40074J

    Article  CAS  PubMed  Google Scholar 

  67. Chao, P., Maguire, T., Novik, E., Cheng, K.-C., Yarmush, M.L.: Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol 78(6), 625–632 (2009). https://doi.org/10.1016/j.bcp.2009.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bambot, S., Holavanahali, R., Lakowicz, J.R., Carter, G.M., Rao, G.: Optical oxygen sensor using fluorescence lifetime measurement. Adv Exp Med Biol 361, 197–205 (1994). https://doi.org/10.1007/978-1-4615-1875-4_25

    Article  CAS  PubMed  Google Scholar 

  69. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H., Tsien, R.Y.: The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006). https://doi.org/10.1126/science.1124618

    Article  CAS  PubMed  Google Scholar 

  70. Sung, J.H., Choi, J., Kim, D., Shuler, M.L.: Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices. Biotechnol Bioeng 104(3), 516–525 (2009). https://doi.org/10.1002/bit.22413

    Article  CAS  PubMed  Google Scholar 

  71. Coward, S.M., Selden, C., Mantalaris, A., Hodgson, H.J.F.: Proliferation Rates of HepG2 cells encapsulated in alginate are increased in a microgravity environment compared with static cultures. Artif. Organs 29(2), 152–158 (2005). https://doi.org/10.1111/j.1525-1594.2005.29026.x

    Article  CAS  PubMed  Google Scholar 

  72. Mao, S., Gao, D., Liu, W., Wei, H., Lin, J.-M.: Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12(1), 219–226 (2012). https://doi.org/10.1039/c1lc20678h

    Article  CAS  PubMed  Google Scholar 

  73. Gunawan, B.K., Kaplowitz, N.: Mechanisms of drug-induced liver disease. Clin Liver Dis 11(3), 459–475 (2007). https://doi.org/10.1016/j.cld.2007.06.001

    Article  PubMed  Google Scholar 

  74. Kostadinova, R., et al.: A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 268(1), 1–16 (2013). https://doi.org/10.1016/j.taap.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  75. Tsai, H.-F., Trubelja, A., Shen, A.Q., Bao, G.: Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14(131), 20170137 (2017). https://doi.org/10.1098/rsif.2017.0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, B.H., Shirahama, H., Kim, M.H., Lee, J.H., Cho, N.-J., Tan, L.P.: Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Materials 9(7), 7 (2017). https://doi.org/10.1038/am.2017.126

    Article  CAS  Google Scholar 

  77. Lu, S., et al.: Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18(22), 3379–3392 (2018). https://doi.org/10.1039/C8LC00852C

    Article  CAS  PubMed  Google Scholar 

  78. Zuchowska, A., Kwapiszewska, K., Chudy, M., Dybko, A., Brzozka, Z.: Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system. Electrophoresis 38(8), 1206–1216 (2017). https://doi.org/10.1002/elps.201600417

    Article  CAS  PubMed  Google Scholar 

  79. Naughton, C.A.: Drug-Induced Nephrotoxicity. AFP 78(6), 743–750 (2008)

    Google Scholar 

  80. Jang, K.-J., et al.: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 5(9), 1119–1129 (2013). https://doi.org/10.1039/C3IB40049B

    Article  CAS  Google Scholar 

  81. Pease, D.C.: Infolded basal plasma membranes found in epithelia noted for their water transport. J Biophys Biochem Cytol 2(4), 203–208 (1956)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duan, Y., et al.: Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A 105(32), 11418–11423 (2008). https://doi.org/10.1073/pnas.0804954105

    Article  PubMed  PubMed Central  Google Scholar 

  83. Duan, Y., Weinstein, A.M., Weinbaum, S., Wang, T.: Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. PNAS 107(50), 21860–21865 (2010). https://doi.org/10.1073/pnas.1015751107

    Article  PubMed  PubMed Central  Google Scholar 

  84. Characterization of P-glycoprotein and multidrug resistance proteins in rat kidney and intestinal cell lines. - Abstract - Europe PMC. https://europepmc.org/article/med/17088052. Accessed 29 Nov 2020.

  85. Kim, S., et al.: Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8(1), 015021 (2016). https://doi.org/10.1088/1758-5090/8/1/015021

    Article  PubMed  Google Scholar 

  86. Pawankar, R.: Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J 7(1), 12 (2014). https://doi.org/10.1186/1939-4551-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pichler, W.J., Tilch, J.: The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 59(8), 809–820 (2004). https://doi.org/10.1111/j.1398-9995.2004.00547.x

    Article  CAS  PubMed  Google Scholar 

  88. How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.6b00357. Accessed 29 Nov 2020.

  89. Chong, L.H., Li, H., Wetzel, I., Cho, H., Toh, Y.-C.: A liver-immune coculture array for predicting systemic drug-induced skin sensitization. Lab Chip 18(21), 3239–3250 (2018). https://doi.org/10.1039/C8LC00790J

    Article  CAS  PubMed  Google Scholar 

  90. Lübberstedt, M., et al.: HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods 63(1), 59–68 (2011). https://doi.org/10.1016/j.vascn.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  91. Python, F., Goebel, C., Aeby, P.: Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 220(2), 113–124 (2007). https://doi.org/10.1016/j.taap.2006.12.026

    Article  CAS  PubMed  Google Scholar 

  92. Tsamandouras, N., Chen, W.L.K., Edington, C.D., Stokes, C.L., Griffith, L.G., Cirit, M.: Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J 19(5), 1499–1512 (2017). https://doi.org/10.1208/s12248-017-0122-4

    Article  CAS  PubMed  Google Scholar 

  93. Theobald, J., et al.: Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng 4(1), 78–89 (2018). https://doi.org/10.1021/acsbiomaterials.7b00417

    Article  CAS  PubMed  Google Scholar 

  94. Oleaga, C., et al.: Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6(1), 1 (2016). https://doi.org/10.1038/srep20030

    Article  CAS  Google Scholar 

  95. Carvalho, C., et al.: Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25), 3267–3285 (2009). https://doi.org/10.2174/092986709788803312

    Article  CAS  PubMed  Google Scholar 

  96. Valera, H.R., Ganguly, B.: Study of plasma level of atorvastatin and its effect on lipid profile. Indian J Physiol Pharmacol 53(1), 73–82 (2009)

    CAS  PubMed  Google Scholar 

  97. Chateauvieux, S., Morceau, F., Dicato, M., Diederich, M.: Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol (2010). https://doi.org/10.1155/2010/479364

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sung, J.H., Shuler, M.L.: A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10), 1385–1394 (2009). https://doi.org/10.1039/b901377f

    Article  CAS  PubMed  Google Scholar 

  99. Li, Z., Guo, Y., Yu, Y., Xu, C., Xu, H., Qin, J.: Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integr Biol (Camb) 8(10), 1022–1029 (2016). https://doi.org/10.1039/c6ib00162a

    Article  CAS  PubMed  Google Scholar 

  100. Wang, Y., et al.: Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics 10(1), 300–311 (2020). https://doi.org/10.7150/thno.38736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Essaouiba, A., et al.: Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies. Biochem. Eng. J. 164, 107783 (2020). https://doi.org/10.1016/j.bej.2020.107783

    Article  CAS  Google Scholar 

  102. Azizgolshani, H., et al.: High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 21(8), 1454–1474 (2021). https://doi.org/10.1039/D1LC00067E

    Article  CAS  PubMed  Google Scholar 

  103. Richardson, L., et al.: Fetal membrane organ-on-chip: an innovative approach to study cellular interactions. Reprod Sci 27(8), 1562–1569 (2020). https://doi.org/10.1007/s43032-020-00184-9

    Article  PubMed  Google Scholar 

  104. Cruz, N.M., et al.: Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater 16(11), 1112–1119 (2017). https://doi.org/10.1038/nmat4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vinken, M.: The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312, 158–165 (2013). https://doi.org/10.1016/j.tox.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  106. Huang, B., et al.: Counting low-copy number proteins in a single cell. Science 315(5808), 81–84 (2007). https://doi.org/10.1126/science.1133992

    Article  CAS  PubMed  Google Scholar 

  107. Wu, H., Wheeler, A., Zare, R.N.: Chemical cytometry on a picoliter-scale integrated microfluidic chip. PNAS 101(35), 12809–12813 (2004). https://doi.org/10.1073/pnas.0405299101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao, J., Yin, X.-F., Fang, Z.-L.: Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4(1), 47–52 (2004). https://doi.org/10.1039/b310552k

    Article  CAS  PubMed  Google Scholar 

  109. Cooper, J.W., Wang, Y., Lee, C.S.: Recent advances in capillary separations for proteomics. Electrophoresis 25(23–24), 3913–3926 (2004). https://doi.org/10.1002/elps.200406154

    Article  CAS  PubMed  Google Scholar 

  110. Wang, Y.-C., Choi, M.H., Han, J.: Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal. Chem. 76(15), 4426–4431 (2004). https://doi.org/10.1021/ac0497499

    Article  CAS  PubMed  Google Scholar 

  111. Zheng, B., Roach, L.S., Ismagilov, R.F.: Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125(37), 11170–11171 (2003). https://doi.org/10.1021/ja037166v

    Article  CAS  PubMed  Google Scholar 

  112. Zheng, B., Gerdts, C.J., Ismagilov, R.F.: Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr Opin Struct Biol 15(5), 548–555 (2005). https://doi.org/10.1016/j.sbi.2005.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hansen, C.L., Skordalakes, E., Berger, J.M., Quake, S.R.: A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. PNAS 99(26), 16531–16536 (2002). https://doi.org/10.1073/pnas.262485199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, L., et al.: Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. PNAS 103(51), 19243–19248 (2006). https://doi.org/10.1073/pnas.0607502103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Anderson, M.J., Hansen, C.L., Quake, S.R.: Phase knowledge enables rational screens for protein crystallization. Proc Natl Acad Sci U S A 103(45), 16746–16751 (2006). https://doi.org/10.1073/pnas.0605293103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maerkl, S.J., Quake, S.R.: A systems approach to measuring the binding energy landscapes of transcription factors. Science 315(5809), 233–237 (2007). https://doi.org/10.1126/science.1131007

    Article  CAS  PubMed  Google Scholar 

  117. Choi, C.J., Cunningham, B.T.: A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Lab Chip 7(5), 550–556 (2007). https://doi.org/10.1039/B618584C

    Article  CAS  PubMed  Google Scholar 

  118. Gohlke, H., Klebe, G.: Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41(15), 2644–2676 (2002). https://doi.org/10.1002/1521-3773(20020802)41:15%3c2644::AID-ANIE2644%3e3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  119. Golovanov, A.P., Blankley, R.T., Avis, J.M., Bermel, W.: Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 129(20), 6528–6535 (2007). https://doi.org/10.1021/ja070505q

    Article  CAS  PubMed  Google Scholar 

  120. Perez, J.M., Josephson, L., O’Loughlin, T., Högemann, D., Weissleder, R.: Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8), 816–820 (2002). https://doi.org/10.1038/nbt720

    Article  CAS  PubMed  Google Scholar 

  121. Attene-Ramos, M.S., Austin, C.P., Xia, M.: High Throughput Screening. Encyclopedia Toxicol (2014). https://doi.org/10.1016/B978-0-12-386454-3.00209-8

    Article  Google Scholar 

  122. Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298(5593), 580–584 (2002). https://doi.org/10.1126/science.1076996

    Article  CAS  PubMed  Google Scholar 

  123. Hong, J.W., Studer, V., Hang, G., Anderson, W.F., Quake, S.R.: A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22(4), 4 (2004). https://doi.org/10.1038/nbt951

    Article  CAS  Google Scholar 

  124. Jang, K., Andras, G.: Bioanalysis in microfluidic devices. J Chromatogr A 943(2), 159–183 (2002). https://doi.org/10.1016/s0021-9673(01)01451-0

    Article  Google Scholar 

  125. Zhang, C., Xu, J., Ma, W., Zheng, W.: PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3), 243–284 (2006). https://doi.org/10.1016/j.biotechadv.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  126. Kong, D.S., Carr, P.A., Chen, L., Zhang, S., Jacobson, J.M.: Parallel gene synthesis in a microfluidic device. Nucleic Acids Res 35(8), e61 (2007). https://doi.org/10.1093/nar/gkm121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Esch MB, Mahler G. Body-on-a-Chip Systems – Design, Fabrication, and Applications. p. 323–50; 2019.

  128. Palaninathan, V., et al.: Multi-organ on a chip for personalized precision medicine. MRS Commun 8(3), 652–667 (2018). https://doi.org/10.1557/mrc.2018.148

    Article  CAS  Google Scholar 

  129. Balijepalli, A., Sivaramakrishan, V.: Organs-on-chips: research and commercial perspectives. Drug Discov Today 22(2), 397–403 (2017). https://doi.org/10.1016/j.drudis.2016.11.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driver, R., Mishra, S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BioChip J 17, 1–23 (2023). https://doi.org/10.1007/s13206-022-00087-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00087-8

Keywords

Navigation