Skip to main content
Log in

Magnetic Nanochain-Based Smart Drug Delivery System with Remote Tunable Drug Release by a Magnetic Field

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Considerable attention is given to drug delivery technology that efficiently delivers appropriate levels of drug molecules to diseased sites with significant therapeutic efficacy. Nanotechnology has been used to develop various strategies for targeted drug delivery, while controlling the release of drugs because of its many benefits. Here, a delivery system was designed to control drug release by external magnetic fields using porous silica and magnetic nanoparticles. Magnetic nanochains (MNs) of various lengths (MN-1: 1.4 ± 0.8 μm, MN-2: 2.2 ± 1.1 μm, and MN-3: 5.3 ± 2.0 μm) were synthesized by controlling the exposure time of the external magnetic force in magnetic nanoaggregates (MNCs). Mesoporous silica-coated magnetic nanochains (MSMNs) (MSMN-1, MSMN-2, and MSMN-3) were prepared by forming a porous silica layer through sol–gel polymerization. These MSMNs could load the drug doxorubicin (DOX) into the silica layer (DOX-MSMNs) and control the release behavior of the DOX through an external rotating magnetic field. Simulations and experiments were used to verify the motion and drug release behavior of the MSMNs. Furthermore, a bio-receptor (aptamer, Ap) was introduced onto the surface of the DOX-MSMNs (Ap-DOX-MSMNs) that could recognize specific cancer cells. The Ap-DOX-MSMNs demonstrated a strong therapeutic effect on cancer cells that was superior to that of the free DOX. The potent ability of these MSMNs as an external stimulus-responsive drug delivery system was proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Tao, C., Zhu, Y.: Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Trans 43, 15482–15490 (2014). https://doi.org/10.1039/c4dt01984a

    Article  CAS  PubMed  Google Scholar 

  2. Lewandowska, A.M., Rudzki, M., Rudzki, S., Lewandowski, T., Laskowska, B.: Environmental risk factors for cancer - review paper. Ann Agric Environ Med 26, 1–7 (2019). https://doi.org/10.26444/aaem/94299

    Article  CAS  PubMed  Google Scholar 

  3. Anand, P., et al.: Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25, 2097–2116 (2008). https://doi.org/10.1007/s11095-008-9661-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dempke, W.C.M., Fenchel, K., Uciechowski, P., Dale, S.P.: Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur J Cancer 74, 55–72 (2017). https://doi.org/10.1016/j.ejca.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  5. Moreau Bachelard, C., Coquan, E., du Rusquec, P., Paoletti, X., Le Tourneau, C.: Risks and benefits of anticancer drugs in advanced cancer patients: a systematic review and meta-analysis. EClinicalMedicine 40, 101130–101138 (2021). https://doi.org/10.1016/j.eclinm.2021.101130

    Article  PubMed  PubMed Central  Google Scholar 

  6. Magalhaes, L.G., Ferreira, L.L.G., Andricopulo, A.D.: Recent advances and perspectives in cancer drug design. An Acad Bras Cienc 90, 1233–1250 (2018). https://doi.org/10.1590/0001-3765201820170823

    Article  CAS  PubMed  Google Scholar 

  7. Li, E., et al.: Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics 2, 233–242 (2018). https://doi.org/10.7150/ntno.25565

    Article  PubMed  PubMed Central  Google Scholar 

  8. Falzone, L., Salomone, S., Libra, M.: Evolution of Cancer Pharmacological treatments at the turn of the third millennium. Front Pharmacol 9, 1300–1326 (2018). https://doi.org/10.3389/fphar.2018.01300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, A., et al.: Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 11, 1–18 (2019)

    Article  CAS  Google Scholar 

  10. Helleday, T.: Chemotherapy-induced toxicity-a secondary effect caused by released DNA? Ann Oncol 28, 2054–2055 (2017). https://doi.org/10.1093/annonc/mdx349

    Article  CAS  PubMed  Google Scholar 

  11. Xin, Y., Yin, M., Zhao, L., Meng, F., Luo, L.: Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14, 228–241 (2017). https://doi.org/10.20892/j.issn.2095-3941.2017.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dang, Y., Guan, J.: Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 1, 10–19 (2020). https://doi.org/10.1016/j.smaim.2020.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mitchell, M.J., et al.: Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20, 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  PubMed  Google Scholar 

  14. Ulbrich, K., et al.: Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116, 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589

    Article  CAS  PubMed  Google Scholar 

  15. Senapati, S., Mahanta, A.K., Kumar, S., Maiti, P.: Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3, 7 (2018). https://doi.org/10.1038/s41392-017-0004-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adepu, S., Ramakrishna, S.: Controlled drug delivery systems: current status and future directions. Molecules 26, 5905–5950 (2021). https://doi.org/10.3390/molecules26195905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon, S., et al.: Multifunctional nanomaterial-alginate drug delivery and imaging system for cancer therapy. BioChip J 13, 236–242 (2019). https://doi.org/10.1007/s13206-019-3309-1

    Article  CAS  Google Scholar 

  18. Ku, B., et al.: Synthesis and characterization of thermoresponsive polymeric nanoparticles. BioChip J 8, 8–14 (2014). https://doi.org/10.1007/s13206-014-8102-6

    Article  CAS  Google Scholar 

  19. Choi, J.-H., et al.: Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BioChip J 10, 331–345 (2016). https://doi.org/10.1007/s13206-016-0409-z

    Article  CAS  Google Scholar 

  20. Wu, C.H., et al.: Trojan-horse nanotube on-command intracellular drug delivery. Nano Lett 12, 5475–5480 (2012). https://doi.org/10.1021/nl301865c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang, B., Guo, J., Liu, C., Qian, J., Yang, W.: Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 20, 9941–9947 (2010). https://doi.org/10.1039/c0jm01237h

    Article  CAS  Google Scholar 

  22. Kang, B., Kukreja, A., Song, D., Huh, Y.M., Haam, S.: Strategies for using nanoprobes to perceive and treat cancer activity: a review. J Biol Eng 11, 13–25 (2017). https://doi.org/10.1186/s13036-016-0044-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12, 991–1003 (2013). https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y.L., Chen, D., Shang, P., Yin, D.C.: A review of magnet systems for targeted drug delivery. J Control Release 302, 90–104 (2019). https://doi.org/10.1016/j.jconrel.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  25. Jang, E., et al.: pi-Hyaluronan nanocarriers for CD44-targeted and pH-boosted aromatic drug delivery. J Mater Chem B 1, 5686–5693 (2013). https://doi.org/10.1039/c3tb20906g

    Article  CAS  PubMed  Google Scholar 

  26. Lim, E.K., et al.: pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23, 2436–2442 (2011). https://doi.org/10.1002/adma.201100351

    Article  CAS  PubMed  Google Scholar 

  27. Kong, S.D., et al.: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett 10, 5088–5092 (2010). https://doi.org/10.1021/nl1033733

    Article  CAS  PubMed  Google Scholar 

  28. Hoare, T., et al.: A Magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9, 3651–3657 (2009)

    Article  CAS  Google Scholar 

  29. Shang-Hsiu, Hu., Liu, T.-Y., Huang, H.-Y., Liu, D.-M., Chen, S.-Y.: Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir 24, 239–244 (2008)

    Article  Google Scholar 

  30. Liu, C., et al.: Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J Mater Chem 19, 4764–4770 (2009). https://doi.org/10.1039/b902985k

    Article  CAS  Google Scholar 

  31. Bear, J.C., et al.: Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Sci Rep 6, 34271 (2016). https://doi.org/10.1038/srep34271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Norris, M.D., Seidel, K., Kirschning, A.: Externally induced drug release systems with magnetic nanoparticle carriers: an emerging field in nanomedicine. Adv Ther 2, 1800092–1800104 (2019). https://doi.org/10.1002/adtp.201800092

    Article  Google Scholar 

  33. Peiris, P.M., et al.: Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6, 4157–4168 (2012)

    Article  CAS  Google Scholar 

  34. Hu, Y., He, L., Yin, Y.: Magnetically responsive photonic nanochains. Angew Chem Int Ed Engl 50, 3747–3750 (2011). https://doi.org/10.1002/anie.201100290

    Article  CAS  PubMed  Google Scholar 

  35. Xiong, Q., et al.: Magnetic nanochain integrated microfluidic biochips. Nat Commun 9, 1743–1754 (2018). https://doi.org/10.1038/s41467-018-04172-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, J., et al.: Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed Engl 48, 5875–5879 (2009). https://doi.org/10.1002/anie.200901566

    Article  CAS  PubMed  Google Scholar 

  37. Choi, J., et al.: Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer. J Biomed Opt 19, 051203–051209 (2014). https://doi.org/10.1117/1.JBO.19.5.051203

    Article  CAS  PubMed  Google Scholar 

  38. Yang, L., Zhao, N., Liu, D.: Dynamics of ferromagnetic nanowires in a rotating magnetic field. Adv Mech Eng 7, 1–11 (2015). https://doi.org/10.1177/1687814015589686

    Article  Google Scholar 

  39. Yang, J., et al.: Motions of magnetic nanosphere under the magnetic field in the rectangular microchannel. J Magn Magn Mater 317, 34–40 (2007). https://doi.org/10.1016/j.jmmm.2007.04.008

    Article  CAS  Google Scholar 

  40. Yang, L., Zhao, N., Jia, L.: Fluid resistance characteristics research of nanowire rotation under a magnetic field. J Therm Sci 24, 73–81 (2015). https://doi.org/10.1007/s11630-015-0758-2

    Article  Google Scholar 

Download references

Acknowledgements

 This research was supported by National R&D Programs through the National Research Foundation (NRF) of Korea funded by Ministry of Science and ICT (MSIT) of Korea (NRF-2021M3E5E3080379, NRF-2018M3A9E2022821, NRF-2018M3A9E2022819, and NRF-2022R1C1C1008815), Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (No. RS-2022-00154853), Technology Development Program for Biological Hazards Management in Indoor Air through the Korea Environment Industry & Technology Institute (KEITI) funded by Ministry of Environment (ME) of Korea (2021003370003 and RE202101004), Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI21C2461), and KRIBB Research Initiative Program (1711134081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Min Huh, Seungjoo Haam or Eun-Kyung Lim.

Ethics declarations

Conflict of Interest

The authors have no competing financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3685 KB)

Supplementary file2 (MP4 8774 KB)

Supplementary file3 (MP4 10840 KB)

Supplementary file4 (MP4 10635 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Shin, MK., Han, S. et al. Magnetic Nanochain-Based Smart Drug Delivery System with Remote Tunable Drug Release by a Magnetic Field. BioChip J 16, 280–290 (2022). https://doi.org/10.1007/s13206-022-00072-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00072-1

Keywords

Navigation