Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples

Abstract

The recognition and detection of metal ions present in biological and environmental samples have attracted great attention in recent years. Various analytical techniques are used to detect metal ions. Among these, the fluorescence technique is among the emerging methods because of its simplicity, selectivity, and applicability to bioimaging. Thus, this review particularly explores paper-based fluorescence chemosensors involved in metal ion detection. Significantly, the first section addresses relevant research on metal ion detection involving various techniques. In the second section, several sensing strategies such as photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, chelation enhanced fluorescence, excited-state intramolecular proton transfer, and aggregation-induced emission for the detection of target metal ions (aluminum, copper, iron, lead, mercury, and zinc) are investigated. The third section particularly discusses the role of fluorescence sensor materials (e.g., fluorescein, rhodamine, naphthalimide, BODIPY, carbon dots, quantum dots) involved in the detection processes and their advantages and limitations. Overall, this article reviews 90 research articles on paper-based fluorescence chemosensors for metal ion detection published until 2021.

This is a preview of subscription content, access via your institution.

Fig. 1

copyright by Elsevier, 2019 and 2021; Reproduced with permission from [47], copyright by Royal Society of Chemistry, 2016; Reproduced with permission from [48], copyright by American Chemical Society, 2012)

Fig. 2

copyright by Springer, 2019)

Fig. 3

copyright by Elsevier, 2019)

Fig. 4

copyright by Elsevier, 2019)

Fig. 5

copyright by Elsevier, 2021)

References

  1. 1.

    Zoroddu, M.A., Aaseth, J., Crisponi, G., Medici, S., Peana, M., Nurchi, V.M.: The essential metals for humans: a brief overview. J. Inorg. biochem. 195, 120–129 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Sriram, G., Bhat, M.P., Patil, P., Uthappa, U.T., Jung, H.Y., Altalhi, T., Kumeria, T., Aminabhavi, T.M., Pai, R.K., Kurkuri, M.D.: Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: a review. Trends Anal. Chem. 93, 212–227 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    Lim, J.W., Kim, T.Y., Lim, M.C., Choi, S.W., Woo, M.A.: Portable pumpless 3D-printed chip for on-site colorimetric screening of Hg2+ in lake water. BioChip J. 14, 169–178 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Wang, L., Peng, X., Fu, H., Huang, C., Li, Y., Liu, Z.: Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 147, 111777 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Azimi, A., Azari, A., Rezakazemi, M., Ansarpour, M.: Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 4, 37–59 (2017)

    Article  Google Scholar 

  6. 6.

    Gumpu, M.B., Sethuraman, S., Krishnan, U.M., Rayappan, J.B.B.: A review on detection of heavy metal ions in water–an electrochemical approach. Sens. Actuators B 213, 515–533 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Mao, S., Chang, J., Zhou, G., Chen, J.: Nanomaterial-enabled rapid detection of water contaminants. Small 11, 5336–5359 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Fu, L.M., Wang, Y.N.: Detection methods and applications of microfluidic paper-based analytical devices. Trends Anal. Chem. 107, 196–211 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Xiong, X., Zhang, J., Wang, Z., Liu, C., Xiao, W., Han, J., Shi, Q.: Simultaneous multiplexed detection of protein and metal ions by a colorimetric microfluidic paper-based analytical device. BioChip J. 14, 429–437 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    Priyadarshini, E., Pradhan, N.: Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens. Actuators B 238, 888–902 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Lin, Y., Gritsenko, D., Feng, S., Teh, Y.C., Lu, X., Xu, J.: Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 83, 256–266 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Tomar, P.K., Chandra, S., Malik, A., Kumar, A.: Nickel analysis in real samples by Ni2+ selective PVC membrane electrode based on a new Schiff base. Mater. Sci. Eng. C 33, 4978–4984 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    McGhee, C.E., Loh, K.Y., Lu, Y.: DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr. Opin. Biotechnol. 45, 191–201 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Subramanian, K.S.: Determination of metals in biofluids and tissues: sample preparation methods for atomic spectroscopic techniques. Spectrochim. Acta B At. Spectrosc. 51, 291–319 (1996)

    Article  Google Scholar 

  15. 15.

    Sivakumar, R., Lee, N.Y.: Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 275, 130096 (2021)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Yin, Z.Y., Hu, J.H., Gui, K., Fu, Q.Q., Yao, Y., Zhou, F.L., Ma, L.L., Zhang, Z.P.: AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J. Photochem. Photobiol. A 396, 112542 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    Yin, H., Truskewycz, A., Cole, I.S.: Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim. Acta 187, 1–25 (2020)

    Article  CAS  Google Scholar 

  18. 18.

    Wang, F., Wang, K., Kong, Q., Wang, J., Xi, D., Gu, B., Lu, S., Wei, T., Chen, X.: Recent studies focusing on the development of fluorescence probes for zinc ion. Coord. Chem. Rev. 429, 213636 (2021)

    CAS  Article  Google Scholar 

  19. 19.

    Hwang, K., Mou, Q., Lake, R.J., Xiong, M., Holland, B., Lu, Y.: Metal-dependent DNAzymes for the quantitative detection of metal ions in living cells: recent progress, current challenges, and latest results on FRET ratiometric sensors. Inorg. Chem. 58, 13696–13708 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Lake, R.J., Yang, Z., Zhang, J., Lu, Y.: DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res. 52, 3275–3286 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Xu, W., Ren, C., Teoh, C.L., Peng, J., Gadre, S.H., Rhee, H.W., Lee, C.L.K., Chang, Y.T.: An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Anal. Chem. 86, 8763–8769 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Zhang, J., Zhu, M., Jiang, D., Zhang, H., Li, L., Zhang, G., Wang, Y., Feng, C., Zhao, H.: A FRET-based colorimetric and ratiometric fluorescent probe for the detection of Cu2+ with a new trimethylindolin fluorophore. New J. Chem. 43, 10176–10182 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Bagheri, M., Masoomi, M.Y.: Sensitive ratiometric fluorescent metal-organic framework sensor for calcium signaling in human blood ionic concentration media. ACS Appl. Mater. Interfaces 12, 4625–4631 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Wu, J.X., Yan, B.: Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal–organic frameworks. Dalton Trans. 46, 15080–15086 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Lin, Z.Y., Xue, S.F., Chen, Z.H., Han, X.Y., Shi, G., Zhang, M.: Bioinspired copolymers based nose/tongue-mimic chemosensor for label-free fluorescent pattern discrimination of metal ions in biofluids. Anal. Chem. 90, 8248–8253 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Bai, L., Tao, F., Li, L., Deng, A., Yan, C., Li, G., Wang, L.: A simple turn-on fluorescent chemosensor based on Schiff base-terminated water-soluble polymer for selective detection of Al3+ in 100% aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 214, 436–444 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Qu, W.J., Yan, G.T., Ma, X.L., Wei, T.B., Lin, Q., Yao, H., Zhang, Y.M.: “Cascade recognition” of Cu2+ and H2PO4 with high sensitivity and selectivity in aqueous media based on the effect of ESIPT. Sens. Actuators B 242, 849–856 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    Peng, J., Li, J., Xu, W., Wang, L., Su, D., Teoh, C.L., Chang, Y.T.: Silica nanoparticle-enhanced fluorescent sensor array for heavy metal ions detection in colloid solution. Anal. Chem. 90, 1628–1634 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Zhou, W., Saran, R., Liu, J.: Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Aragay, G., Pons, J., Merkoçi, A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433–3458 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Carter, K.P., Young, A.M., Palmer, A.E.: Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564–4601 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Wu, L., Huang, C., Emery, B.P., Sedgwick, A.C., Bull, S.D., He, X.P., Tian, H., Yoon, J., Sessler, J.L., James, T.D.: Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 49, 5110–5139 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Yang, Y., Noviana, E., Nguyen, M.P., Geiss, B.J., Dandy, D.S., Henry, C.S.: based microfluidic devices: emerging themes and applications. Anal. Chem. 89, 71–91 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Mahadeva, S.K., Walus, K., Stoeber, B.: Paper as a platform for sensing applications and other devices: a review. ACS Appl. Mater. Interfaces 7, 8345–8362 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Kim, S.M., Kim, J., Noh, S., Sohn, H., Lee, T.: Recent development of aptasensor for influenza virus detection. BioChip J. 14, 1–13 (2020)

    Article  CAS  Google Scholar 

  36. 36.

    Yin, P., Niu, Q., Liu, J., Wei, T., Hu, T., Li, T., Qin, X., Chen, J.: A new AIEE-active carbazole based colorimetric/fluorimetric chemosensor for ultra-rapid and nano-level determination of Hg2+ and Al3+ in food/environmental samples and living cells. Sens. Actuators B 331, 129418 (2021)

    CAS  Article  Google Scholar 

  37. 37.

    Wang, J., Niu, Q., Hu, T., Li, T., Wei, T.: A new phenothiazine-based sensor for highly selective, ultrafast, ratiometric fluorescence and colorimetric sensing of Hg2+: applications to bioimaging in living cells and test strips. J. Photochem. Photobiol. A 384, 112036 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    Singhal, D., Althagafi, I., Kumar, A., Yadav, S., Prasad, A.K., Pratap, R.: Thieno [3, 2-c] pyran: an ESIPT based fluorescence “turn-on” molecular chemosensor with AIE properties for the selective recognition of Zn2+ ion. New J. Chem. 44, 12019–12026 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    Sun, X.J., Ma, Y.Q., Fu, H., Xing, Z.Y., Sun, Z.G., Shen, Y., Li, J.L.: A highly selective fluorescence “Turn on” and absorbance-ratiometric detection of Al3+ in totally H2O and its application in test paper. J. Fluoresc. 29, 577–586 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Sun, J., Li, T.R., Liu, C., Xue, J., Tian, L.M., Liu, K., Li, S.L., Yang, Z.Y.: A dual probe for selective sensing of Zn (II) by fluorescent and Cu (II) by colorimetric methods in different systems based on 7, 8-benzochromone-3-carbaldehyde-(fluorescein) hydrazone. J. Photochem. Photobiol. A 406, 113007 (2021)

    CAS  Article  Google Scholar 

  41. 41.

    Kim, Y., Jang, G., Lee, T.S.: New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl. Mater. Interfaces 7, 15649–15657 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Yin, P., Niu, Q., Yang, Q., Lan, L., Li, T.: A new “naked-eye” colorimetric and ratiometric fluorescent sensor for imaging Hg2+ in living cells. Tetrahedron 75, 130687 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    Geng, L.Y., Zhao, Y., Kamya, E., Guo, J.T., Sun, B., Feng, Y.K., Zhu, M.F., Ren, X.K.: Turn-off/on fluorescent sensors for Cu2+ and ATP in aqueous solution based on a tetraphenylethylene derivative. J. Mater. Chem. C 7, 2640–2645 (2019)

    CAS  Article  Google Scholar 

  44. 44.

    Zeng, S., Li, S.J., Sun, X.J., Li, M.Q., Xing, Z.Y., Li, J.L.: A benzothiazole-based chemosensor for significant fluorescent turn-on and ratiometric detection of Al3+ and its application in cell imaging. Inorg. Chim. Acta 486, 654–662 (2019)

    CAS  Article  Google Scholar 

  45. 45.

    Bigdeli, A., Ghasemi, F., Abbasi-Moayed, S., Shahrajabian, M., Fahimi-Kashani, N., Jafarinejad, S., Nejad, M.A.F., Hormozi-Nezhad, M.R.: Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances-a review. Anal. Chim. Acta 1079, 30–58 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Sharma, S., Ghosh, K.S.: Recent advances (2017–20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET). Spectrochim. Acta A Mol. Biomol. Spectrosc. 254, 119610 (2021)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Gupta, A., Kumar, N.: A review of mechanisms for fluorescent ‘“turn-on”’probes to detect Al 3+ ions. RSC adv. 6, 106413–106434 (2016)

    CAS  Article  Google Scholar 

  48. 48.

    Lee, H., Lee, H.S., Reibenspies, J.H., Hancock, R.D.: Mechanism of “turn-on” fluorescent sensors for mercury (II) in solution and its implications for ligand design. Inorg. Chem. 51, 10904–10915 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Crisponi, G., Nurchi, V.M., Bertolasi, V., Remelli, M., Faa, G.: Chelating agents for human diseases related to aluminium overload. Coord. Chem. Rev. 256, 89–104 (2012)

    CAS  Article  Google Scholar 

  50. 50.

    Bondy, S.C.: The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31, 575–581 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Shi, L., Li, L., Li, X., Zhang, G., Zhang, Y., Dong, C., Shuang, S.: Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sens. Actuators B 251, 234–241 (2017)

    CAS  Article  Google Scholar 

  52. 52.

    Li, N.N., Zeng, S., Li, M.Q., Ma, Y.Q., Sun, X.J., Xing, Z.Y., Li, J.L.: A highly selective naphthalimide-based chemosensor:“naked-eye” colorimetric and fluorescent turn-on recognition of Al3+ and its application in practical samples, test paper and logic gate. J. Fluoresc. 28, 347–357 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Liu, T., Wan, X., Dong, Y., Li, W., Wu, L., Pei, H., Yao, Y.: Facile synthesis of a water-soluble fluorescence sensor for Al3+ in aqueous solution and on paper substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 625–629 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Yadav, N., Singh, A.K.: A turn-on ESIPT based fluorescent sensor for detection of aluminum ion with bacterial cell imaging and logic gate applications. Mater. Sci. Eng. C 90, 468–475 (2018)

    CAS  Article  Google Scholar 

  55. 55.

    Tian, L., Xue, J., Yang, Z.Y.: A simple quinoline derivative as fluorescent probe with high sensitivity and selectivity for Al3+ in aqueous solution. Tetrahedron Lett. 59, 4110–4115 (2018)

    CAS  Article  Google Scholar 

  56. 56.

    Bai, L., Xu, Y., Li, L., Tao, F., Wang, S., Wang, L., Li, G.: An efficient water-soluble fluorescent chemosensor based on furan Schiff base functionalized PEG for the sensitive detection of Al3+ in pure aqueous solution. New J. Chem. 44, 11148–11154 (2020)

    CAS  Article  Google Scholar 

  57. 57.

    Xu, Y., Kong, L., Bai, L., Chen, A., Li, N., Cheng, L., Liu, W., Sun, X., Tao, F., Wang, L., Li, G.: A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron 79, 131888 (2021)

    CAS  Article  Google Scholar 

  58. 58.

    Li, Y.P., Zhu, X.H., Li, S.N., Jiang, Y.C., Hu, M.C., Zhai, Q.G.: Highly selective and sensitive turn-off–on fluorescent probes for sensing Al3+ ions designed by regulating the excited-state intramolecular proton transfer process in metal-organic frameworks. ACS Appl. Mater. Interfaces 11, 11338–11348 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Liu, T.T., Li, S.J., Fu, H., Tian, Z.N., Sun, X.J., Xing, Z.Y.: A fluorescence turn-on probe for the recognition of Al3+ and its application in cell image. J. Photochem. Photobiol. A 403, 112865 (2020)

    CAS  Article  Google Scholar 

  60. 60.

    Yin, P., Niu, Q., Wei, T., Li, T., Li, Y., Yang, Q.: A new thiophene-based dual functional chemosensor for ultrasensitive colorimetric detection of Cu2+ in aqueous solution and highly selective fluorimetric detection of Al3+ in living cells. J. Photochem. Photobiol. A 389, 112249 (2020)

    CAS  Article  Google Scholar 

  61. 61.

    Wu, M., Suo, F., Zhou, J., Gong, Q., Bai, L., Chen, B., Wu, Q., Zhang, C., Yu, H., Huang, X., Li, L.: Paper-based fluorogenic device for detection of copper ions in a biological system. ACS Appl. Bio Mater. 1, 1523–1529 (2018)

    CAS  Article  Google Scholar 

  62. 62.

    Liu, C., Ning, D., Zhang, C., Liu, Z., Zhang, R., Zhao, J., Zhao, T., Liu, B., Zhang, Z.: Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces 9, 18897–18903 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Shi, L., Zhao, B., Li, X., Zhang, G., Zhang, Y., Dong, C., Shuang, S.: Green-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Anal. Methods 9, 2197–2204 (2017)

    CAS  Article  Google Scholar 

  64. 64.

    Praneerad, J., Thongsai, N., Supchocksoonthorn, P., Kladsomboon, S., Paoprasert, P.: Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 211, 59–70 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Guo, Z., Niu, Q., Li, T., Wang, E.: Highly chemoselective colorimetric/fluorometric dual-channel sensor with fast response and good reversibility for the selective and sensitive detection of Cu2+. Tetrahedron 75, 3982–3992 (2019)

    CAS  Article  Google Scholar 

  66. 66.

    Wang, J., Niu, Q., Wei, T., Li, T., Hu, T., Chen, J., Qin, X., Yang, Q., Yang, L.: Novel phenothiazine-based fast-responsive colori/fluorimetric sensor for highly sensitive, selective and reversible detection of Cu2+ in real water samples and its application as an efficient solid-state sensor. Microchem. J. 157, 104990 (2020)

    CAS  Article  Google Scholar 

  67. 67.

    Wang, J.X., Xing, Z.Y., Tian, Z.N., Wu, D.Q., Xiang, Y.Y., Li, J.L.: A dual-functional probe for sensing pH change and ratiometric detection of Cu2+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 235, 118318 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Li, S., Cao, D., Meng, X., Hu, Z., Li, Z., Yuan, C., Zhou, T., Han, X., Ma, W.: A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu2+ and PPi and its applicability in live cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 230, 118022 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Long, C., Hu, J.H., Fu, Q.Q., Ni, P.W.: A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life. Spectrochim. Acta A Mol. Biomol. Spectrosc. 219, 297–306 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Suo, F., Chen, X., Fang, H., Gong, Q., Yu, C., Yang, N.D., Li, S., Wu, Q., Li, L., Huang, W.: Hybrid fluorophores-based fluorogenic paper device for visually high-throughput detection of Cu2+ in real samples. Dyes Pigm. 170, 107639 (2019)

    CAS  Article  Google Scholar 

  71. 71.

    Zhou, J., Wu, Q., Chen, X., Qin, X., Zhang, G., Wu, M., Fang, H., Lu, Y., Yu, H., Li, L., Huang, W.: Two-component ratiometric sensor for Cu2+ detection on paper-based device. Anal. Bioanal. Chem. 411, 6165–6172 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Lv, R., Li, H., Su, J., Fu, X., Yang, B., Gu, W., Liu, X.: Zinc metal–organic framework for selective detection and differentiation of Fe (III) and Cr (VI) ions in aqueous solution. Inorg. Chem. 56, 12348–12356 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Zhu, Y., Bao, Y., Wang, L., Bi, J., Liu, Y., Xie, C.: Hydrothermal oxidation method to synthesize nitrogen containing carbon dots from compost humic acid as selective Fe (III) sensor. Mater. Res. Express 7, 095008 (2020)

    CAS  Article  Google Scholar 

  74. 74.

    Nath, P., Chatterjee, M., Chanda, N.: Dithiothreitol-facilitated synthesis of bovine serum albumin–gold nanoclusters for Pb (II) ion detection on paper substrates and in live cells. ACS Appl. Nano Mater. 1, 5108–5118 (2018)

    CAS  Article  Google Scholar 

  75. 75.

    Yi, K., Zhang, L.: Embedding dual fluoroprobe in metal-organic frameworks for continuous visual recognition of Pb2+ and PO43- via fluorescence’turn-off-on’response: agar test paper and fingerprint. J. Hazard. Mater. 389, 122141 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Ha, E., Basu, N., Bose-O’Reilly, S., Dórea, J.G., McSorley, E., Sakamoto, M., Chan, H.M.: Current progress on understanding the impact of mercury on human health. Environ. Res. 152, 419–433 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Anh, N.T.N., Chowdhury, A.D., Doong, R.A.: Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sens. Actuators B 252, 1169–1178 (2017)

    Article  CAS  Google Scholar 

  78. 78.

    Wang, Y., Yang, L., Liu, B., Yu, S., Jiang, C.: A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New J. Chem. 42, 15671–15677 (2018)

    CAS  Article  Google Scholar 

  79. 79.

    Ninwong, B., Sangkaew, P., Hapa, P., Ratnarathorn, N., Menger, R.F., Henry, C.S., Dungchai, W.: Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration. RSC Adv. 10, 9884–9893 (2020)

    CAS  Article  Google Scholar 

  80. 80.

    Zong, L., Xie, Y., Li, Q., Li, Z.: A new red fluorescent probe for Hg2+ based on naphthalene diimide and its application in living cells, reversibility on strip papers. Sens. Actuators B 238, 735–743 (2017)

    CAS  Article  Google Scholar 

  81. 81.

    Lan, L., Niu, Q., Li, T.: A highly selective colorimetric and ratiometric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips. Anal. Chim. Acta 1023, 105–114 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Wang, Z., Zhang, Y., Yin, J., Yang, Y., Luo, H., Song, J., Xu, X., Wang, S.: A novel camphor-based “turn-on” fluorescent probe with high specificity and sensitivity for sensing mercury (II) in aqueous medium and its bioimaging application. ACS Sustain. Chem. Eng. 8, 12348–12359 (2020)

    CAS  Article  Google Scholar 

  83. 83.

    Jiang, Y., Duan, Q., Zheng, G., Yang, L., Zhang, J., Wang, Y., Zhang, H., He, J., Sun, H., Ho, D.: An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg2+ detection and imaging applications. Analyst 144, 1353–1360 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Selvaraj, M., Rajalakshmi, K., Ahn, D.H., Yoon, S.J., Nam, Y.S., Lee, Y., Xu, Y., Song, J.W., Lee, K.B.: Tetraphenylethene-based fluorescent probe with aggregation-induced emission behavior for Hg2+ detection and its application. Anal. Chim. Acta 1148, 238178 (2021)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Ponram, M., Balijapalli, U., Sambath, B., Iyer, S.K., Kakaraparthi, K., Thota, G., Bakthavachalam, V., Cingaram, R., Sung-Ho, J., Sundaramurthy, K.N.: Inkjet-printed phosphorescent Iridium (III) complex based paper sensor for highly selective detection of Hg2+. Dyes Pigm. 163, 176–182 (2019)

    CAS  Article  Google Scholar 

  86. 86.

    Smith, J.L., Xiong, S., Markesbery, W.R., Lovell, M.A.: Altered expression of zinc transporters-4 and-6 in mild cognitive impairment, early and late Alzheimer’s disease brain. Neuroscience 140, 879–888 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Liu, Y., Qu, X., Guo, Q., Sun, Q., Huang, X.: QD-Biopolymer-TSPP assembly as efficient BiFRET sensor for ratiometric and visual detection of zinc ion. ACS Appl. Mater. Interfaces 9, 4725–4732 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Diao, H., Guo, L., Liu, W., Feng, L.: A novel polymer probe for Zn (II) detection with ratiometric fluorescence signal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 196, 274–280 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Wen, X., Wang, Q., Fan, Z.: Highly selective turn-on fluorogenic chemosensor for Zn (II) detection based on aggregation-induced emission. J. Lumin. 194, 366–373 (2018)

    CAS  Article  Google Scholar 

  90. 90.

    Xue, J., Tian, L.M., Yang, Z.Y.: A novel rhodamine-chromone Schiff-base as turn-on fluorescent probe for the detection of Zn (II) and Fe (III) in different solutions. J. Photochem. Photobiol. A 369, 77–84 (2019)

    CAS  Article  Google Scholar 

  91. 91.

    Chen, X., Xu, J., Suo, F., Yu, C., Zhang, D., Chen, J., Wu, Q., Jing, S., Li, L., Huang, W.: A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc (II) ions and its bioimaging in living cells and zebrafishes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 117949 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Jiang, G., Shi, F., Jia, Y., Cui, S., Pu, S.: A novel donor-acceptor fluorescent sensor for Zn2+ with high selectivity and its application in test paper. J. Fluoresc. 30, 1567–1574 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Santos, D.C., Maia, P.J.S., de Abreu Lopes Jr, M.A., Forero, J.S.B., de Souza, A.L.F.A.: Simple isoniazid-based N-Acylhydrazone derivative as potential fluorogenic probe for Zn2+ Ions. J. Fluoresc. 31, 175–184 (2021)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Wang, J.T., Pei, Y.Y., Yan, M.Y., Li, Y.G., Yang, G.G., Qu, C.H., Luo, W., Wang, J., Li, Q.F.: A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem. J. 160, 105776 (2021)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A2B5B01001971).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nae Yoon Lee.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, R., Lee, N.Y. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BioChip J (2021). https://doi.org/10.1007/s13206-021-00026-z

Download citation

Keywords

  • Environmental monitoring
  • Fluorescence chemosensor
  • Metal ions
  • Paper strip