Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling

Abstract

Sufficiently long reaction time and low flow velocity are crucial for capillary microfluidic immunoassay chips, especially for truly “one-step” detection with continuous on-chip labelling and capturing. In this study, a multistory stairs-based new delay valve is used to meet the time and flow requirements for protein testing. The delay strategy is capable of slowing down the flow of liquid into the functional region and delaying the time out of the regions as well, thus extending the labelling and capture time to about 100 and 60 s respectively, and further reducing the flow velocity to below 8 μL/min. Based on the principle of sandwich-like immunocomplex, the designed chip is capable of automatically accomplishing on-chip mixing, labelling and capturing procedures via once sample loading and sensitively detecting human Alpha-Fetoprotein (AFP) in 40 μL serum with a wide dynamic ranging from 10 ng/mL to 10 000 ng/mL within 5 min. It could be foreseeable that this microchip has great potential in biomarkers clinical testing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Herzog, C., Poehler, E., Peretzki, A.J., Borisov, S.M., Aigner, D., Mayr, T., Nagl, S.: Continuous on-chip fluorescence labelling, free-flow isoelectric focusing and marker-free isoelectric point determination of proteins and peptides. Lab Chip 16, 1565–1572 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    Liang, C., Liu, Y., Niu, A., Liu, C., Li, J., Ning, D.: Smartphone-app based point-of-care testing for myocardial infarction biomarker cTnI using an autonomous capillary microfluidic chip with self-aligned on-chip focusing (SOF) lenses. Lab Chip 19, 1797–1807 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    Dziomba, S., Araya-Farias, M., Smadja, C., Taverna, M., Carbonnier, B., Tran, N.T.: Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: a review. Anal Chim Acta 955, 1–26 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    Manz, A., Harrison, D.J., Verpoorte, E.M.J., Fettinger, J.C., Paulus, A., Lüdi, H., Widmer, H.M.: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatogr. A 593, 253–258 (1992)

    CAS  Article  Google Scholar 

  5. 5.

    Schonhorn, J.E., Fernandes, S.C., Rajaratnam, A., Deraney, R.N., Rolland, J.P., Mace, C.R.: A device architecture for three-dimensional, patterned paper immunoassays. Lab Chip 14, 4653–4658 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    Li, J., Macdonald, J.: Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosens. Bioelectron. 83, 177–192 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    Han, K.N., Li, C.A., Seong, G.H.: Microfluidic chips for immunoassays. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6, 119–141 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    Li, X., Pan, X. M., Lu, J. M., Zhou, Y. P., Gong, J. M.: Dual-modal visual/photoelectrochemical all-in-one bioassay for rapid detection of AFP using 3D printed microreactor device. Biosens. Bioelectron. 158, 112158 (2020).

  9. 9.

    He, X. Y., Ge, C., Zheng, X. Q., Tang, B., Chen, L., Li, S. B., Wang, L., Zhang, L. Q., Xu, Y.: Rapid identification of alpha-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au nanocomposites. Sens. Actuator B-Chem. 317, 128196 (2020).

  10. 10.

    Huang, C.H., Wang, B.X., Chen, Y.Y., Jin, G.: Label-free immunoassay of carcinoembryonic antigen by microfluidic channel biosensor based on imaging ellipsometry and its clinic application. Integr. Ferroelectr. 209, 19–29 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    Jiao, Y. C., Du, C., Zong, L. J., Guo, X. Y., Han, Y. F., Zhang, X. P., Li, L., Zhang, C. W., Ju, Q., Liu, J. H., Yu, H. D., Huang, W.: 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens. Actuator B-Chem. 306, 127239 (2020).

  12. 12.

    Chen, J.-S., Chen, P.-F., Lin, H.T.-H., Huang, N.-T.: A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection. Analyst 145, 7654–7661 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    Sohrabi, H., Kordasht, H. K., Pashazadeh-Panahi, P., Nezhad-Mokhtari, P., Hashemzaei, M., Majidi, M. R., Mosafer, J., Oroojalian, F., Mokhtarzadeh, A., de la Guardia, M.: Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem. J. 158, 105287 (2020).

  14. 14.

    Sanjay, S.T., Fu, G., Dou, M., Xu, F., Liu, R., Qi, H., Li, X.: Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140, 7062–7081 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    Wang, W., Cai, X., Li, Q., Zheng, L., Yu, X., Zhang, H., Wang, J.: Application of a microfluidic paper-based bioimmunosensor with laser-induced fluorescence detection in the determination of alpha-fetoprotein from serum of hepatopaths. Talanta 221, 121660 (2021).

  16. 16.

    Guo, X., Zong, L., Jiao, Y., Han, Y., Zhang, X., Xu, J., Li, L., Zhang, C.W., Liu, Z., Ju, Q., Liu, J., Xu, Z., Yu, H.D., Huang, W.: Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires. Anal. Chem. 91, 9300–9307 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    Devi, R.V., Doble, M., Verma, R.S.: Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron. 68, 688–698 (2015)

    Article  Google Scholar 

  18. 18.

    Olanrewaju, A., Beaugrand, M., Yafia, M., Juncker, D.: Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Lin, Y.H., Wu, C.C., Peng, Y.S., Wu, C.W., Chang, Y.T., Chang, K.P.: Detection of anti-p53 autoantibodies in saliva using microfluidic chips for the rapid screening of oral cancer. RSC Adv. 8, 15513–15521 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    Hess, J.F., Zehnle, S., Juelg, P., Hutzenlaub, T., Zengerle, R., Paust, N.: Review on pneumatic operations in centrifugal microfluidics. Lab Chip 19, 3745–3770 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    Clime, L., Daoud, J., Brassard, D., Malic, L., Geissler, M., Veres, T.: Active pumping and control of flows in centrifugal microfluidics. Microfluid. Nanofluid. 23, 3 (2019)

    Article  Google Scholar 

  22. 22.

    Weigl, B., Domingo, G., LaBarre, P., Gerlach, J.: Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8, 1999–2014 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    Eijkel, J.C.T., van den Berg, A.: Active transport: a new chemical separation method? Lab Chip 6, 597–600 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    Zimmermann, M., Hunziker, P., Delamarche, E.: Valves for autonomous capillary systems. Microfluid. Nanofluid. 5, 395–402 (2008)

    Article  Google Scholar 

  25. 25.

    Safavieh, R., Juncker, D.: Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip 13, 4180–4189 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij, N., Delamarche, E.: Autonomous microfluidic capillary system. Anal. Chem. 74, 6139–6144 (2002)

    CAS  Article  Google Scholar 

  27. 27.

    Lutz, B., Liang, T., Fu, E., Ramachandran, S., Kauffman, P., Yager, P.: Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13, 2840–2847 (2013)

    CAS  Article  Google Scholar 

  28. 28.

    Glière, A., Delattre, C.: Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens. Actuators A 130–131, 601–608 (2006)

    Article  Google Scholar 

  29. 29.

    Zhang, L., Jones, B., Majeed, B., Nishiyama, Y., Okumura, Y. & Stakenborg, T.: Study on stair-step liquid triggered capillary valve for microfluidic systems. J. Micromech. Microeng. 28, 065005 (2018).

  30. 30.

    Chang, N., Zhai, J., Liu, B., Zhou, J., Zeng, Z., Zhao, X.: Low cost 3D microfluidic chips for multiplex protein detection based on photonic crystal beads. Lab Chip 18, 3638–3644 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Wang, T., Zhang, K.H.: New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma. Front. Oncol. 10, 1316 (2020)

    Article  Google Scholar 

  32. 32.

    Lin, Q., Wu, J., Fang, X., Kong, J.: Washing-free centrifugal microchip fluorescence immunoassay for rapid and point-of-care detection of protein. Anal. Chim. Acta 1118, 18–25 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    Zhou, B., Xu, W., Syed, A.A., Chau, Y., Chen, L., Chew, B., Yassine, O., Wu, X., Gao, Y., Zhang, J., Xiao, X., Kosel, J., Zhang, X.-X., Yao, Z., Wen, W.: Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15, 2125–2132 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    Pawinanto, R. E., Yunas, J., Hashim, A. M.: Micropillar based active microfluidic mixer for the detection of glucose concentration. Microelectron. Eng. 234, 111452 (2020).

  35. 35.

    Rashid, F., Glover, P.W.J., Lorinczi, P., Hussein, D., Lawrence, J.A.: Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J. Petrol. Sci. Eng. 156, 814–826 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Key Research and Development Plan Project of Anhui Province (No. 1704a0802157) and the Key-Area Research and Development Program of Guangdong Province (No. 2019B020219003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Chang, J., Zhu, Z. et al. Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BioChip J (2021). https://doi.org/10.1007/s13206-021-00025-0

Download citation

Keywords

  • Microfluidic
  • Immunoassay microchip
  • Delay valve
  • On-chip labelling
  • POCT