Fully Automated System for Rapid Enrichment and Precise Detection of Enterobacteria Using Magneto-Electrochemical Impedance Measurements


The contamination of food and drinking water by bacteria that cause food poisoning is a critical public health issue. In general, the procedures for testing the presence of pathogenic bacteria in public is not very effective, because it is time consuming and does not facilitate real-time monitoring in a field setting. Therefore, this study introduced a fully automated platform that would allow non-experts to easily examine the major food poisoning bacteria in a field setting, from pretreatment samples to final detection. Two enterobacteria species, of four different bacteria species (i.e., Escherichia coli and Salmonella typhimurium) were successfully immobilized on the surface of magnetic beads by exploiting the specific binding force with mannose. Subsequently, magneto-electrochemical impedance measurement technology allowed bacterial detection with a high sensitivity. E. coli, typical enterobacteria, was detected in 25 min with a detection limit of 100 CFU/mL. Moreover, we demonstrated that the automatic performance and the experimental consistency was greatly improved in comparison with those of manually conducted experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Mobed, A., Baradaran, B., Guardia, M., Agazadeh, M., Hasanzadeh, M., Rezaee, M.A., Mosafer, J., Mokhtarzadeh, A., Hamblin, M.R.: Advances in detection of fastidious bacteria: from microscopic observation to molecular biosensors. Trends Anal. Chem. 113, 157–171 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    Gracias, K.S., McKillip, J.L.: A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 50, 883–890 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    Ma, F., Rehman, A., Liu, H., Zhang, J., Zhu, S., Zeng, X.: Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli. Anal. Chem. 87, 1560–1568 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Liu, D., Zhu, Y., Li, N., Lu, Y., Cheng, J., Xu, Y.: A portable microfluidic analyzer for integrated bacterial detection using visible loop-mediated amplification. Sens. Actuator B Chem. 310, 127834 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    Nguyen, V.D., Nguyen, H.V., Bui, K.H., Seo, T.S.: Smart phone-powered capillary electrophoresis on a chip for foodborne bacteria detection. Sens. Actuator B Chem. 301, 127108 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Yoon, T., Moon, H.S., Song, J.W., Hyun, K.A., Jung, H.I.: Automatically controlled microfluidic system for continuous separation of rare bacteria from blood. CYTOM PART A 95, 1135–1144 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Liu, Q., Zhang, X., Li, X., Liu, S., Sui, G.: A semi-quantitative method for point-of-care assessments of specific pathogenic bioaerosols using a portable microfluidics-based device. J. Aerosol Sci. 115, 173–180 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Lee, W.I., Park, Y., Park, J., Shrivastava, S., Son, Y.M., Choi, H.J., Lee, J., Jeon, B., Lee, H., Lee, N.E.: A smartphone fluorescence imaging-based mobile biosensing system integrated with a passive fluidic control cartridge for minimal user intervention and high accuracy. Lab Chip. 19, 1502–1511 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    Schulz, M., Calabrese, S., Hausladen, F., Wurn, H., Drossart, D., Stock, K., Sobieraj, A.M., Eichenseher, F., Loessner, M.J., Schmelcher, M., Gerhardts, A., Goetz, U., Handel, M., Serr, A., Haecker, G., Li, J., Specht, M., Koch, P., Meyer, M., Tepper, P., Rother, R., Jehle, M., Wadle, S., Zengerle, R., Stetten, F., Paust, N., Borst, N.: Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. Lab Chip. 20, 2549–2561 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    Geng, Z., Gu, Y., Li, S., Lin, B., Liu, P.: A Fully integrated in vitro diagnostic microsystem for pathogen detection developed using a “3D Extensible” microfluidic design paradigm. Micromachines. 10, 873 (2019)

    Article  Google Scholar 

  11. 11.

    Stumpf, F., Schwemmer, F., Hutzenlaub, T., Baumann, D., Strohmeier, O., Dingemanns, G., Simons, G., Sager, C., Plobner, L., Stetten, F., Zengerle, R., Mark, D.: LabDisk with complete reagent prestorage for sample-to-answer nucleic acid-based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip. 16, 199–207 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    Pignato, S., Marino, A.M., Emanuele, M.C., Lannotta, V., Caracappa, S., Giammanco, G.: Evaluation of new culture media for rapid detection and isolation of salmonellae in foods. Appl. Environ. Microbiol. 61, 1996–1999 (1995)

    CAS  Article  Google Scholar 

  13. 13.

    Fu, C.J., Carter, J.N., Li, Y., Porter, J.H., Kerley, M.S.: Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Lett. Appl. Microbiol. 42, 490–494 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    Clifford, R.J., Milillo, M., Prestwood, J., Quintero, R., Zurawski, D.V., Kwak, Y.I., Waterman, P.E., Lesho, E.P., Mc Gann, P.: Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR. PLoS ONE 7, e48558 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    Yang, J., Zhang, N., Lv, J., Zhu, P., Pan, X., Hu, J., Wu, W., Li, S., Li, H.: Comparing the performance of conventional PCR, RTQ-PCR, and droplet digital PCR assays in detection of Shigella. Mol. Cell. Probes. 51, 101531 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    Kwon, K., Park, J.W., Hyun, K.A., Kwak, B.S., Yong, D.E., Hwang, J., Jung, H.I.: Continuous adsorption and photothermal lysis of airborne bacteria using a gold-nanoparticle-embedded-geometrically activated surface interaction (gold-GASI) chip. Sens. Actuator B Chem. 248, 580–588 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Kwon, K., Gwak, H., Hyun, K.A., Kwak, B.S., Jung, H.I.: High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sens. Actuator B Chem. 294, 62–68 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    Kisiela, D., Laskowska, A., Sapeta, A., Kuczkowski, M., Wieliczko, A., Ugorski, M.: Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152, 1337–1346 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    Kline, K.A., Fälker, S., Dahlberg, S., Normark, S., Henriques-Normark, B.: Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 5, 580–592 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    Wang, Q., Kaminska, I., Niedziolka-Jonsson, J., Opallo, M., Li, M., Boukherroub, R., Szunerits, S.: Sensitive sugar detection using 4-aminophenylboronic acid modified graphene. Biosens. Bioelectron. 50, 331–337 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    Wang, B., Anzai, J.: Recent progress in lectin-based biosensors. Materials. 8, 8590–8607 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    Raetz, C.R.H., Whitfield, C.: Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002)

    CAS  Google Scholar 

  23. 23.

    Abellan-Flos, M., Timmer, B.J.J., Altun, S., Aastrup, T., Vincent, S.P., Ramstrom, O.: QCM sensing of multivalent interactions between lectins and well-defined glycosylated nanoplatforms. Biosens. Bioelectron. 139, 111328 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    Sousa, M.D., Martinez, D.S.T., Alves, O.L.: Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes. J. Nanopart. Res. 18, 143 (2016)

    Article  Google Scholar 

  25. 25.

    Yu, L., Hou, Y., Cheng, C., Schlaich, C., Noeske, P.M., Wei, Q., Haag, R.: High-antifouling polymer brush coatings on nonpolar surfaces via adsorption-cross-linking strategy. ACS Appl. Mater. Interfaces. 9, 44281–44292 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    Telford, J., Barocchi, M., Margarit, I., et al.: Pili in Gram-positive pathogens. Nat Rev Microbiol 4, 509–519 (2006)

    CAS  Article  Google Scholar 

  27. 27.

    Spaulding, C. N., Schreiber IV, H. L., Zheng, W., Dodson, K. W., Hazen, J. E., Conover, M. S., Wang, F., Svenmarker, P., Luna-Rico, A., Francetic, O., Andersson, M., Hultgren, S., Egelman, E. H. Functional role of the type 1 pilus rod structure in mediating host–pathogen interactions. eLife. 7, 1–25 (2018)

  28. 28.

    Santos, M.B., Agusil, J.P., Prieto-Simon, B., Sporer, C., Teixeira, V., Samitier, J.: Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens. Bioelectron. 45, 174–180 (2013)

    Article  Google Scholar 

  29. 29.

    Wang, L., Huo, X., Qi, W., Xia, Z., Li, Y., Lin, J.: Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 211, 120715 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    Xu, M., Wang, R., Li, Y.: Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 148, 200–208 (2016)

    CAS  Article  Google Scholar 

Download references


This research was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea Government (MSIT) (No. 2020R1A5A1018052), Korea Environment Industry & Technology Institute (KEITI) through Aquatic Ecosystem Conversion Research Program, funded by Korea Ministry of Environment (MOE) (2020003030007) and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Crop Viruses and Pests Response Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (320035031HD030).

Author information



Corresponding author

Correspondence to Hyo-Il Jung.

Ethics declarations

Ethical Consideration

Ethical approval was not required for this study, as it was not performed on animals or humans.

Conflict of Interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, K., Yoon, T., Gwak, H. et al. Fully Automated System for Rapid Enrichment and Precise Detection of Enterobacteria Using Magneto-Electrochemical Impedance Measurements. BioChip J (2021). https://doi.org/10.1007/s13206-021-00024-1

Download citation


  • Enterobacteria
  • Food poisoning
  • Fully automated bacterial detection
  • Magneto-electrochemical and mannose