Skip to main content
Log in

Development of an Inkless, Visual Volumetric Chip Operated with a Micropipette

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Visual volumetric chips based on gas-generating reactions can potentially be applied to instrument-free point-of-care testing (POCT). However, the structures of conventional chips and their detection methods are typically complicated due to two technical issues: (1) ink, as a distance marker, must be injected into a specified position before sample introduction, and (2) the gas-generating reaction must be initiated in a sealed state. In this study, an inkless volumetric chip operated with a micropipette was developed. The volumetric chip consisted of a reaction well (R well), a substrate well (S well) containing a H2O2 solution as an O2 generator, and a channel connecting the upper side of the R well and the lower side of the S well. Sample injection into the R well is followed by the insertion of a micropipette that is used to exert a negative pressure, which subsequently drives the transfer of a large portion of the H2O2 solution to the R well to initiate the gas-generating reaction. Meanwhile, a small portion of the H2O2 solution remains in the channel for use as a distance marker. The performance of the volumetric chip was evaluated by detecting Salmonella typhimurium, affording a limit of detection of 10 CFU within 20 min for culture samples and within 75 min for spiked milk samples. The volumetric chip developed herein is advantageous for POCT applications due to its simple structure and detection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engvall, E., Perlmann, P.: Enzyme-linked immunosorbent assay, ELISA. J. Immunol. 109, 129–135 (1972)

    CAS  PubMed  Google Scholar 

  2. Lequin, R.M.: Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005)

    Article  CAS  Google Scholar 

  3. Liu, D., Tian, T., Chen, X., Lei, Z., Song, Y., Shi, Y., Ji, T., Zhu, Z., Yang, L., Yang, C.: Gas-generating reactions for point-of-care testing. Analyst 143, 1294–1304 (2018)

    Article  CAS  Google Scholar 

  4. Tian, T., Li, J., Song, Y., Zhou, L., Zhu, Z., Yang, C.J.: Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip 16, 1139–1151 (2016)

    Article  CAS  Google Scholar 

  5. Li, Y., Uddayasankar, U., He, B., Wang, P., Qin, L.: Fast, sensitive, and quantitative point-of-care platform for the assessment of drugs of abuse in urine, serum, and whole blood. Anal. Chem. 89, 8273–8281 (2017)

    Article  CAS  Google Scholar 

  6. Li, Y., Xuan, J., Song, Y., Wang, P., Qin, L.: A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab Chip 15, 3300–3306 (2015)

    Article  CAS  Google Scholar 

  7. Liu, D., Li, X., Zhou, J., Liu, S., Tian, T., Song, Y., Zhu, Z., Zhou, L., Ji, T., Yang, C.: A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens. Bioelectron. 96, 332–338 (2017)

    Article  CAS  Google Scholar 

  8. Song, Y., Wang, Y., Qi, W., Li, Y., Xuan, J., Wang, P., Qin, L.: Integrative volumetric bar-chart chip for rapid and quantitative point-of-care detection of myocardial infarction biomarkers. Lab. Chip 16, 2955–2962 (2016)

    Article  CAS  Google Scholar 

  9. Song, Y., Xia, X., Wu, X., Wang, P., Qin, L.: Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays. Angew. Chem. Int. Ed. 53, 12451–12455 (2014)

    CAS  Google Scholar 

  10. Song, Y., Zhang, Y., Bernard, P.E., Reuben, J.M., Ueno, N.T., Arlinghaus, R.B., Zu, Y., Qin, L.: Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat. Commun. 3, 1283–1289 (2012)

    Article  Google Scholar 

  11. Xie, Y., Wei, X., Yang, Q., Guan, Z., Liu, D., Liu, X., Zhou, L., Zhu, Z., Lin, Z., Yang, C.: A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. Chem. Commun. 52, 13377–13380 (2016)

    Article  CAS  Google Scholar 

  12. Lee, S., Kwon, D., Yim, C., Jeon, S.: Facile detection of troponin I using dendritic platinum nanoparticles and capillary tube indicators. Anal. Chem. 87, 5004–5008 (2015)

    Article  CAS  Google Scholar 

  13. Wu, Z., Fu, Q., Yu, S., Sheng, L., Xu, M., Yao, C., Xiao, W., Li, X., Tang, Y.: Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application. Biosens. Bioelectron. 85, 657–663 (2016)

    Article  CAS  Google Scholar 

  14. Bu, S., Wang, K., Ju, C., Wang, C., Li, Z., Hao, Z., Shen, M., Wan, J.: Point-of-care assay to detect foodborne pathogenic bacteria using a low-cost disposable medical infusion extension line as readout and MnO2 nanoflowers. Food Control 98, 399–404 (2019)

    Article  Google Scholar 

  15. Kwon, S., Choi, S.J.: Development of tubing-based stationary liquid-phase enzyme-linked immunosorbent assay. BioChip J. 13, 174–181 (2019)

    Article  CAS  Google Scholar 

  16. Kim, M.-H., Choi, S.-J.: Immunoassay of paralytic shellfish toxins by moving magnetic particles in a stationary liquid-phase lab-on-a-chip. Biosens. Bioelectron. 66, 136–140 (2015)

    Article  CAS  Google Scholar 

  17. Park, B., Choi, S.-J.: Sensitive immunoassay-based detection of Vibrio parahaemolyticus using capture and labeling particles in a stationary liquid phase lab-on-a-chip. Biosens. Bioelectron. 90, 269–275 (2017)

    Article  CAS  Google Scholar 

  18. Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takada, K., Mizunoe, Y.: A simple assay for measuring catalase activity: A visual approach. Sci. Rep. 3, 3081 (2013)

    Article  Google Scholar 

  19. Hadwan, M.H., Ali, S.K.: New spectrophotometric assay for assessments of catalase activity in biological samples. Anal. Biochem. 542, 29–33 (2018)

    Article  CAS  Google Scholar 

  20. Van Lente, F., Pepoy, M.: Coupled-enzyme determination of catalase activity in erythrocytes. Clin. Chem. 36, 1339–1343 (1990)

    Article  Google Scholar 

  21. Shivakumar, A., Nagaraja, P., Chamaraja, N.A., Krishna, H., Avinash, K.: Determination of catalase activity using chromogenic probe involving iso-nicotinicacidhydrazide and pyrocatechol. J. Biotechnol. 155, 406–411 (2011)

    Article  CAS  Google Scholar 

  22. Beers, R.F., Sizer, I.W.: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952)

    Article  CAS  Google Scholar 

  23. Mueller, S., Riedel, H.D., Stremmel, W.: Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal. Biochem. 245, 55–60 (1997)

    Article  CAS  Google Scholar 

  24. Wu, M., Lin, Z., Wolfbeis, O.S.: Determination of the activity of catalase using a europium(III)-tetracycline-derived fluorescent substrate. Anal. Biochem. 320, 129–135 (2003)

    Article  CAS  Google Scholar 

  25. El Nashar, R.M.: Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode. Talanta 96, 161–167 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea grant funded by the Korean government (MSIT) [No. 2018R1A2B6005091] and by the 2019 Academic Research Support Program in Gangneung-Wonju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Jung Choi.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Choi, SJ. Development of an Inkless, Visual Volumetric Chip Operated with a Micropipette. BioChip J 15, 179–186 (2021). https://doi.org/10.1007/s13206-021-00021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00021-4

Keywords

Navigation