Fabrication of a Nanoplasmonic Chip to Enhance Neuron Membrane Potential Imaging by Metal-Enhanced Fluorescence Effect


Optical imaging is a useful tool to acquire neural activities because of its high spatial resolution, and various voltage indicators were developed to image membrane potential of neurons. Voltage sensitive dyes (VSDs) are one of them but their signal-to-noise ratio (SNR) is so low that enhancing SNR of VSD has become important. In this study, we investigated the metal-enhanced fluorescence (MEF) effect on VSD imaging by fabricating nanoplasmonic resonance chip using gold nanorods (GNRs). To amplify the fluorescence signal we used polyelectrolyte layers to control the distance between metal nanoparticles and fluorophore. Cultured rat hippocampal neurons and di-8-ANEPPS, a widely used VSD, were used to test the nanoplasmonic resonance chip, and the maximum level of fluorescence signal was obtained when nine layers of polyelectrolyte spacer were used. The nanoplasmonic resonance chip with GNR showed the possibility of the improvement in voltage imaging of neurons and is expected to enhance the availability of neuronal activity imaging in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Scanziani, M., Häusser, M.: Electrophysiology in the age of light. Nature 461, 930–939 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    Yuste, R., Denk, W.: Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995)

    CAS  Article  Google Scholar 

  3. 3.

    Smetters, D., Majewska, A., Yuste, R.: Detecting action potentials in neuronal populations with calcium imaging. Methods Companion Methods Enzymol. 18, 215–221 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    Tang, S., Reddish, F., Zhuo, Y., Yang, J.J.: Fast kinetics of calcium signaling and sensor design. Curr. Opin. Chem. Biol. 27, 90–97 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    Peterka, D.S., Takahashi, H., Yuste, R.: Imaging voltage in neurons. Neuron 69, 9–21 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    Gong, Y., Huang, C., Li, J.Z., Grewe, B.F., Zhang, Y., Eismann, S., Schnitzer, M.J.: High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science (80) 350, 1361–1366 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Kralj, J.M., Douglass, A.D., Hochbaum, D.R., MacLaurin, D., Cohen, A.E.: Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    Hochbaum, D.R., Zhao, Y., Farhi, S.L., Klapoetke, N., Werley, C.A., Kapoor, V., Zou, P., Kralj, J.M., MacLaurin, D., Smedemark-Margulies, N., Saulnier, J.L., Boulting, G.L., Straub, C., Cho, Y.K., Melkonian, M., Wong, G.K.S., Harrison, D.J., Murthy, V.N., Sabatini, B.L., Boyden, E.S., Campbell, R.E., Cohen, A.E.: All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    Piatkevich, K.D., Jung, E.E., Straub, C., Linghu, C., Park, D., Suk, H.-J., Hochbaum, D.R., Goodwin, D., Pnevmatikakis, E., Pak, N., Kawashima, T., Yang, C.-T., Rhoades, J.L., Shemesh, O., Asano, S., Yoon, Y.-G., Freifeld, L., Saulnier, J.L., Riegler, C., Engert, F., Hughes, T., Drobizhev, M., Szabo, B., Ahrens, M.B., Flavell, S.W., Sabatini, B.L., Boyden, E.S.: A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 901–901 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    Park, J.E., Kim, J., Nam, J.M.: Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem. Sci. 8, 4696–4704 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Darvill, D., Centeno, A., Xie, F.: Plasmonic fluorescence enhancement by metal nanostructures: Shaping the future of bionanotechnology. Phys. Chem. Chem. Phys. 15, 15709–15726 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Wang, J., Moore, J., Laulhe, S., Nantz, M., Achilefu, S., Kang, K.A.: Fluorophoregold nanoparticle complex for sensitive optical biosensing and imaging. Nanotechnology 23, 095501 (2012)

    Article  Google Scholar 

  13. 13.

    Zhang, B., Kumar, R.B., Dai, H., Feldman, B.J.: A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 20, 948–953 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Liu, B., Li, Y., Wan, H., Wang, L., Xu, W., Zhu, S., Liang, Y., Zhang, B., Lou, J., Dai, H., Qian, K.: High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 26, 7994–8002 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Xu, J., Yu, H., Hu, Y., Chen, M., Shao, S.: A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens. Bioelectron. 75, 1–7 (2016)

    Article  Google Scholar 

  16. 16.

    Theodorou, I.G., Jawad, Z.A.R., Jiang, Q., Aboagye, E.O., Porter, A.E., Ryan, M.P., Xie, F.: Gold nanostar substrates for metal-enhanced fluorescence through the first and second near-infrared windows. Chem. Mater. 29, 6916–6926 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Pang, J., Theodorou, I.G., Centeno, A., Petrov, P.K., Alford, N.M., Ryan, M.P., Xie, F.: Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J. Mater. Chem. C 5, 917–925 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    Mei, Z., Tang, L.: Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal. Chem. 89, 633–639 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    Camposeo, A., Persano, L., Manco, R., Wang, Y., Del Carro, P., Zhang, C., Li, Z.-Y., Pisignano, D., Xia, Y.: Metal-enhanced near-infrared fluorescence by micropatterned gold nanocages. ACS Nano 9, 10047–10054 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    Koh, B., Li, X., Zhang, B., Yuan, B., Lin, Y., Antaris, A.L., Wan, H., Gong, M., Yang, J., Zhang, X., Liang, Y., Dai, H.: Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small 12, 457–465 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Zhou, L., Ding, F., Chen, H., Ding, W., Zhang, W., Chou, S.Y.: Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal. Chem. 84, 4489–4495 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Nik, B., El-Sayed, M.A.: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)

    Article  Google Scholar 

  23. 23.

    Lu, M., Kang, N., Chen, C., Yang, L., Li, Y., Hong, M., Luo, X., Ren, L., Wang, X.: Plasmonic enhancement of cyanine dyes for near-infrared light-triggered photodynamic/photothermal therapy and fluorescent imaging. Nanotechnology 28, 445710 (2017)

    Article  Google Scholar 

  24. 24.

    Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science (80) 277, 1232–1237 (1997)

    CAS  Article  Google Scholar 

  26. 26.

    Ray, K., Badugu, R., Lakowicz, J.R.: Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem. Mater. 19, 5902–5909 (2007)

    CAS  Article  Google Scholar 

  27. 27.

    Feng, A.L., You, M.L., Tian, L., Singamaneni, S., Liu, M., Duan, Z., Lu, T.J., Xu, F., Lin, M.: Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci. Rep. 5, 1–10 (2015)

    CAS  Google Scholar 

  28. 28.

    Mock, J.J., Hill, R.T., Degiron, A., Zauscher, S., Chilkoti, A., Smith, D.R.: Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245–2252 (2008)

    CAS  Article  Google Scholar 

  29. 29.

    Akbay, N., Lakowicz, J.R., Ray, K.: Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles. J. Phys. Chem. C 116, 10766–10773 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Tawa, K., Sasakawa, C., Fujita, T., Kiyosue, K., Hosokawa, C., Nishii, J., Oike, M., Kakinuma, N.: Fluorescence microscopy imaging of cells with a plasmonic dish integrally molded. Jpn. J. Appl. Phys. 55, 03DF12 (2016).

    Article  Google Scholar 

  31. 31.

    Yang, H., Qi, X., Zhang, B., Wang, H., Xie, L.: Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films. Appl. Opt. 55, 5387–5392 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Tawa, K., Yasui, C., Hosokawa, C., Aota, H., Nishii, J.: In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy. ACS Appl. Mater. Interfaces 6, 20010–20015 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    Bondre, N., Zhang, Y., Geddes, C.D.: Metal-enhanced fluorescence based calcium detection: greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures. Sens. Actuators B Chem. 152, 82–87 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    Lu, Y., Liu, G.L., Lee, L.P.: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5–9 (2005)

    CAS  Article  Google Scholar 

  35. 35.

    Yoo, S., Kim, R., Park, J.H., Nam, Y.: Electro-optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    Lee, J.W., Jung, H., Cho, H.H., Lee, J.H., Nam, Y.: Gold nanostar-mediated neural activity control using plasmonic photothermal effects. Biomaterials 153, 59–69 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    Wang, J., Wang, S., Mi, L., Liu, J.: Aspect ratio dependence of the enhancement of fluorescence intensity by gold nanobipyramids for cancer cell imaging and photodynamic therapy. Laser Phys. 28, 075602 (2018)

    Article  Google Scholar 

  38. 38.

    Chen, Y., Munechika, K., Ginger, D.S.: Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007)

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2015R1A2A1A09003605, NRF-2018R1A2A1A05022604).

Author information



Corresponding author

Correspondence to Yoonkey Nam.

Ethics declarations

Conflict of interest

Authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, R., Nam, Y. Fabrication of a Nanoplasmonic Chip to Enhance Neuron Membrane Potential Imaging by Metal-Enhanced Fluorescence Effect. BioChip J 15, 171–178 (2021). https://doi.org/10.1007/s13206-021-00017-0

Download citation


  • Metal enhanced fluorescence
  • Gold nanorod
  • Cell membrane
  • Voltage-sensitive dye