Skip to main content
Log in

Using Nanomaterials in Colorimetric Toxin Detection

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Exposure to toxins through contaminated food is a serious concern. For the detection of toxins in complex matrices, there are many analytical instrumentation-based methods; however, these approaches are generally expensive, laborious to perform, and require skilled technicians. Thus, they can only be utilized in centralized laboratories. To efficiently prevent the contamination by toxins and improve food safety, the use of on-site toxin detection methods enabling simple, rapid, sensitive, specific, reliable, and affordable identification of toxins is required. A colorimetric toxin detection strategy providing a naked-eye readout platform suits these requirements. Notably, the implementation of nanomaterials in the colorimetric strategy has proven to rapidly generate a higher capacity for detectable color responses owing to their unique physicochemical and catalytic properties. In this review, recent research on colorimetric toxin detection utilizing diverse nanostructures including noble metal nanoparticles and enzyme-like catalytic nanomaterials (nanozymes) is reviewed and discussed. Current challenges and future prospects for the utilization of nanomaterials in colorimetric toxin detection are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced with permission from Elsevier

Fig. 2

Reproduced with permission from Elsevier

Fig. 3

Reproduced with permission from Elsevier

Fig. 4

Reproduced with permission from Elsevier

Similar content being viewed by others

References

  1. World Health Organization. Natural toxins in food. https://www.who.int/news-room/fact-sheets/detail/natural-toxins-in-food. Accessed 29 Apr 2020

  2. Goud, K.Y., Kailasa, S.K., Kumar, V., Tsang, Y.F., Lee, S.E., Gobi, K.V., Kim, K.-H.: Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review. Biosens. Bioelectron. 121, 205–222 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. Cinar, A., Onbaşi, E.: Mycotoxins: the hidden danger in foods. In: Sabunocuoglu, S. (ed.) Mycotoxins and Food Safety, pp. 1–21. IntechOpen, Boston (2019)

    Google Scholar 

  4. Rocha, M.E.B., Freire, F.D.C.O., Maia, F.E.F., Guedes, M.I.F., Rondina, D.: Mycotoxins and their effects on human and animal health. Food Control 36, 159–165 (2014)

    Article  Google Scholar 

  5. Bano, K., Khan, W.S., Cao, C., Khan, R.F., Webster, T.J.: Biosensors for detection of marine toxins. In: Wu, A., Khan, W.S. (eds.) Nanobiosensors: From Design to Application, pp. 329–356. Wiley-VCH, Germany (2020)

    Chapter  Google Scholar 

  6. Lan, L., Yao, Y., Ping, J., Ying, Y.: Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl. Mater. Interfaces 9, 23287–23301 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Holzinger, M., Le Goff, A., Cosnier, S.: Nanomaterials for biosensing applications: a review. Front. Chem. 2, 1–10 (2014)

    Article  CAS  Google Scholar 

  8. Malhotra, B.D., Srivastava, S., Ali, M.A., Singh, C.: Nanomaterial-based biosensors for food toxin detection. Appl. Biochem. Biotechnol. 174, 880–896 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, R., Ragavan, K.V., Thakur, M.S., Raghavarao, K.S.M.S.: Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 74, 612–627 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., Kim, Y., Liu, Y., Kou, X.: Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials—a review. Anal. Chim. Acta 1069, 1–27 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. Ahn, G., Sekhon, S.S., Jeon, Y.-E., Kim, M.-S., Won, K., Kim, Y.-H., Ahn, J.-Y.: Detection of endotoxins using nanomaterials. J. Toxicol. Environ. Health Sci. 9, 259–268 (2017)

    Article  Google Scholar 

  12. Shin, H.Y., Park, T.J., Kim, M.I.: Recent research trends and future prospects in nanozymes. J. Nanomater. 756278, 1–11 (2015)

    Google Scholar 

  13. Wang, F., Liu, S., Lin, M., Chen, X., Lin, S., Du, X., Li, H., Ye, H., Qiu, B., Lin, Z., Guo, L., Chen, G.: Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers. Biosens. Bioelectron. 68, 475–480 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Csáki, A., Stranik, O., Fritzsche, W.: Localized surface plasmon resonance based biosensing. Expert Rev. Mol. Diagn. 18, 279–296 (2018)

    Article  PubMed  Google Scholar 

  15. Cordeiro, M., Carlos, F.F., Pedrosa, P., Lopez, A., Baptista, P.V.: Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics 6, 1–20 (2016)

    Article  Google Scholar 

  16. Lismont, M., Dreesen, L.: Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon. Mater. Sci. Eng. C 32, 1437–1442 (2012)

    Article  CAS  Google Scholar 

  17. Huang, Y., Ren, J., Qu, X.: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Huang, L., Chen, K., Zhang, W., Zhu, W., Liu, X., Wang, J., Wang, R., Hu, N., Suo, Y., Wang, J.: ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens. Actuators, B 269, 79–87 (2018)

    Article  CAS  Google Scholar 

  19. Batule, B.S., Park, K.S., Gautam, S., Cheon, H.J., Kim, M.I., Park, H.G.: Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sens. Actuators, B 283, 749–754 (2019)

    Article  CAS  Google Scholar 

  20. Kim, M.S., Cho, S., Joo, S.H., Lee, J., Kwak, S.K., Kim, M.I., Lee, J.: N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 13, 4312–4321 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X.: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Lai, W., Wei, Q., Xu, M., Zhuang, J., Tang, D.: Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens. Bioelectron. 89, 645–651 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Liu, W., Gan, C., Chang, W., Qileng, A., Lei, H., Liu, Y.: Double-integrated mimic enzymes for the visual screening of microcystin-LR: copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme. Anal. Chim. Acta 1054, 128–136 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. Sun, S., Zhao, R., Feng, S., Xie, Y.: Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchim. Acta 185, 1–7 (2018)

    Article  Google Scholar 

  25. Tan, F., Xie, X., Xu, A., Deng, K., Zeng, Y., Yang, X., Huang, H.: Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B. Talanta 194, 634–642 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C., Qian, J., Wang, K., Yang, X., Liu, Q., Hao, N., Wang, C., Dong, X., Huang, X.: Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens. Bioelectron. 77, 1183–1191 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Bazin, I., Tria, S.A., Hayat, A., Marty, J.-L.: New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 87, 285–298 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Gu, H., Duan, N., Wu, S., Hao, L., Xia, Y., Ma, X., Wang, Z.: Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  29. Ha, S.-J., Park, J.-H., Lee, B., Kim, M.-G.: Label-free direct detection of saxitoxin based on a localized surface plasmon resonance aptasensor. Toxins 11, 500–517 (2019)

    Article  Google Scholar 

  30. Kant, K., Shahbazi, M.-A., Dave, V.K., Ngo, T.A., Chidambara, V.A., Than, L.Q., Bang, D.D., Wolff, A.: Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 36, 1003–1024 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Luan, Y., Chen, Z., Xie, G., Chen, J., Lu, A., Li, C., Fu, H., Ma, Z., Wang, J.: Rapid visual detection of aflatoxin B1 by label-free aptasensor using unmodified gold nanoparticles. J. Nanosci. Nanotechnol. 15, 1357–1361 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Niessner, R., Knopp, D.: Controlled growth of immunogold for amplified optical detection of aflatoxin B1. Analyst 140, 1453–1458 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Ji, Y., Ren, M., Li, Y., Huang, Z., Shu, M., Yang, H., Xiong, Y., Xu, Y.: Detection of aflatoxin B1 with immunochromatographic test strips: enhanced signal sensitivity using gold nanoflowers. Talanta 142, 206–212 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Wu, K., Ma, C., Zhao, H., Chen, M., Deng, Z.: Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chem. 277, 273–278 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Tian, F., Zhou, J., Jiao, B., He, Y.: A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale 11, 9547–9555 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. He, Y., Tian, F., Zhou, J., Zhao, Q., Fu, R., Jiao, B.: Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J. Hazard. Mater. 388, 121758 (2019)

    Article  PubMed  Google Scholar 

  37. Tian, F., Zhou, J., Fu, R., Cui, Y., Zhao, Q., Jiao, B., He, Y.: Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 320, 126607 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y., Xing, G., Yang, J., Wang, F., Deng, R., Zhang, G., Hu, X., Zhang, Y.: Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin A and zearalenone in cereal. J. Sci. Food Agric. 96, 3673–3678 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Morabito, S., Silvestro, S., Faggio, C.: How the marine biotoxins affect human health. Nat. Prod. Res. 32, 621–631 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Wei, J., Chang, W., Qileng, A., Liu, W., Zhang, Y., Rong, S., Lei, H., Liu, Y.: Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: Enzyme-induced photoelectrochemistry and colorimetry. Anal. Chem. 90, 9606–9613 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Fu, L.-L., Zhao, X.-Y., Ji, L.-D., Xu, J.: Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 160, 1–7 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. Lago, J., Rodríguez, L.P., Blanco, L., Vieites, J.M., Cabado, A.G.: Tetrodotoxin, an extremely potent marine neurotoxin: distribution, toxicity, origin and therapeutical uses. Mar. Drugs 13, 6384–6406 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ling, S., Li, X., Zhang, D., Wang, K., Zhao, W., Zhao, Q., Wang, R., Yuan, J., Xin, S., Wang, S.: Detection of okadaic acid (OA) and tetrodotoxin (TTX) simultaneously in seafood samples using colloidal gold immunoassay. Toxicon 165, 103–109 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. Jin, X., Chen, J., Zeng, X., Xu, L., Wu, Y., Fu, F.: A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens. Bioelectron. 128, 45–51 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. Mondal, B., Ramlal, S., Lavu, P.S., Bhavanashri, N., Kingston, J.: Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front. Microbiol. 9, 1–8 (2018)

    Article  CAS  Google Scholar 

  46. Zhou, D., Xie, G., Cao, X., Chen, X., Zhang, X., Chen, H.: Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles. Microchim. Acta 183, 2753–2760 (2016)

    Article  CAS  Google Scholar 

  47. Aguila, J.L., Varshney, A.K., Wang, X., Stanford, L., Scharff, M., Fries, B.C.: Detection and measurement of staphylococcal enterotoxin-like K (SEl-K) secretion by Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 52, 2536–2543 (2014)

    Article  Google Scholar 

  48. Alexis, L., Zhang, L., Hu, D., Salmain, M., Mazouzi, Y., Flack, R., Liedberg, B., Boujday, S.: Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl. Mater. Interfaces 11, 46462–46471 (2019)

    Article  Google Scholar 

  49. Selvaprakash, K., Chen, Y.-C.: Glycosylated protein-functionalized gold nanoparticle-based detection of heat-labile enterotoxin from complex samples. Sens. Actuators, B 322, 128640 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government [Ministry of Science and ICT (NRF-2019R1A2C1087459)] and by the Gachon University research fund of 2019 (GCU-2019-0812). This work was also supported under the framework of international cooperation program managed by NRF (NRF-2019K2A9A2A06020985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.H., Kim, M.I. Using Nanomaterials in Colorimetric Toxin Detection. BioChip J 15, 123–134 (2021). https://doi.org/10.1007/s13206-021-00013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00013-4

Keywords

Navigation