Skip to main content
Log in

Microsized 3D Hydrogel Printing System using Microfluidic Maskless Lithography and Single Axis Stepper Motor

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The 3D printing apparatus in conventional inkjet and stereolithography systems is limited to continuous fabrication of a microsized three-dimensional hydrogel composed of multiple substances. We present a micro three-dimensional printing system by combining a polydimethylsiloxane microfluidic channel through which various fluids can flow into a micro two-dimensional particle generation system, and a single-axis stepper motor to control the thickness of each layer. The optimal channel designs for micro three-dimensional printing were set up through a physics simulation program and using the simulation analysis, the optimal microfluidic channel was fabricated. Through the system and channel, three-dimensional micropatterns and particles could be fabricated and the generated microparticles automatically collected by the washing flow in the channel. Zinc oxide nanoparticle materials transparent, biocompatible, and capable of absorbing ultraviolet light were added to the premixed photocurable solution used for the microparticle production, and thereby precise micro three-dimensional patterns and particles could be fabricated. In addition, by transporting a variety of fluids into the microfluidic channel, it was possible to create micro three-dimensional particles composed of heterogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wise, K.D. & Najafi, K. Microfabrication techniques for integrated sensors and microsystems. Science 254, 1335–1342 (1991).

    Article  CAS  Google Scholar 

  2. Hierlemann, A., Brand, O., Hagleitner, C. & Baltes, H. Microfabrication techniques for chemical/biosensors. Proc. IEEE 91, 839–863 (2003).

    Article  CAS  Google Scholar 

  3. Marzencki, M., Ammar, Y. & Basrour, S. Integrated power harvesting system including a MEMS generator and a power management circuit. Sens. Actuators, A 145, 363–370 (2008).

    Article  Google Scholar 

  4. Beebe, D.J., Moore, J.S., Yu, Q., Liu, R.H., Kraft, M.L. & Devadoss, C. Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proc. Natl. Acad. Sci. U. S. A. 97, 13488–13493 (2000).

    Article  CAS  Google Scholar 

  5. Anderson, J.R., Chiu, D.T., Jackman, R.J., Chemiavskaya, O., McDonald, J.C., Wu, H., Whitesides, S.H. & Whitesides, G.H. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 72, 3158–3164 (2000).

    Article  CAS  Google Scholar 

  6. Lin, C.-H., Lee, G.-B., Lin, Y.-H. & Chang, G.-L. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J. Micromech. Microeng. 11, 726–732 (2001).

    Article  CAS  Google Scholar 

  7. Hnatovsky, C., Taylor, R.S., Simova, E., Bhardwaj, V.R., Rayner, D.M. & Corkim, P.B. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett. 30, 1867–1869 (2005).

    Article  CAS  Google Scholar 

  8. Takeuchi, S., Garstecki, P., Weibel, D.B. & White-sides, G.M. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17, 1067–1072 (2005).

    Article  CAS  Google Scholar 

  9. Choi, C.H., Jung, J.H., Hwang, T.S. & Leezz, C.S. In situ microfluidic synthesis of monodisperse PEG microspheres. Macromol. Res. 17, 163–167 (2009).

    Article  CAS  Google Scholar 

  10. Rhee, M., Valencia, P.M., Rodriguez, M.I., Langer, R., Farokhzad, O.C. & Karnik, R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv. Mater. 23, H79–H83 (2011).

    Article  CAS  Google Scholar 

  11. Chu, L.Y., Utada, A.S., Shah, R.K., Kim, J.W. & Weitz, D.A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46, 8970–8974 (2007).

    Article  CAS  Google Scholar 

  12. Adams, L.L.A., Kodger, T.E., Kim, S.H., Shum, H.C., Franke, T. & Weitz, D.A. Single step emulsification for the generation of multi-component double emulsions. Soft Matter 8, 10719–10724 (2012).

    Article  CAS  Google Scholar 

  13. Jenness, N.J., Hill, R.T., Hucknall, A., Chilkoti, A. & Clark, R.L. A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express 18, 11754–11762 (2010).

    Article  CAS  Google Scholar 

  14. Bae, H.J., Bae, S., Yoon, J., Park, C., Kim, K., Kwon, S. & Park, W. Self-organization of maze-like structures via guided wrinkling. Sci. Adv. 3, e1700071 (2017).

    Article  Google Scholar 

  15. Han, S., Bae, H.J., Kim, J., Shin, S., Choi, S.E., Lee, S.H., Kwon, S. & Park, W. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR Code for anti-counterfeiting of drugs. Adv. Mater. 24, 5924–5929 (2012).

    Article  CAS  Google Scholar 

  16. Chung, S.E., Park, W., Park, H., Yu, K., Park, N. & Kwon, S. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106 (2007).

    Article  Google Scholar 

  17. Chung, S.E., Park, W., Shin, S., Lee, S.A. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008).

    Article  CAS  Google Scholar 

  18. Lee, H., Kim, J., Kim, H., Kim, J. & Kwon, S. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater. 9, 745–749 (2010).

    Article  CAS  Google Scholar 

  19. Park, W., Han, S., Lee, H. & Kwon, S. Free-floating amphiphilic picoliter droplet carriers for multiplexed liquid loading in a microfluidic channel. Microfluid. Nanofluid. 13, 511–518 (2012).

    Article  CAS  Google Scholar 

  20. Yoon, J., Kim, K. & Park, W. Modulated grayscale UV pattern for uniform photopolymerization based on a digital micromirror device system. Appl. Phys. Lett. 111, 033505 (2017).

    Article  Google Scholar 

  21. Nam, S.M., Kim, K., Kang, I.S., Park, W. & Lee, W. Generation of 3D microparticles in microchannels with non-rectangular cross sections. BioChip J. 13, 226–235 (2019).

    Article  CAS  Google Scholar 

  22. Kim, L.N., Choi, S.-E., Kim, J., Kim, H. & Kwon, S. Single exposure fabrication and manipulation of 3D hydrogel cell microcarriers. Lab Chip 11, 48–51 (2011).

    Article  CAS  Google Scholar 

  23. Song, S.-H., Kim, K., Choi, S.-E., Han, S., Lee, H.S., Kwon, S. & Park, W. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication. Opt. Lett. 39, 5162–5165 (2014).

    Article  Google Scholar 

  24. Habasaki, S., Lee, W.C., Yoshida, S. & Takeuchi, S. Vertical flow lithography for fabrication of 3D anisotropic particles. Small 11, 6391–6396 (2015).

    Article  CAS  Google Scholar 

  25. Shim, T.S., Yang, S.M. & Kim, S.H. Dynamic designing of microstructures by chemical gradient-mediated growth. Nat. Commun. 6, 6584 (2015).

    Article  Google Scholar 

  26. Arai, K., Iwanaga, S., Toda, H., Genci, C., Nishiyama, Y. & Nakamura, M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3, 034113 (2011).

    Article  Google Scholar 

  27. Xu, T., Zhao, W., Zhu, J.M., Albanna, M.Z., Yoo, J.J. & Atala, A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34, 130–139 (2013).

    Article  Google Scholar 

  28. Hardin, J.O., Ober, T.J., Valentine, A.D. & Lewis, J.A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    Article  CAS  Google Scholar 

  29. Tayalia, P., Mendonca, C.R., Baldacchini, T., Mooney, D.J. & Mazur, E. 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20, 4494–4498 (2008).

    Article  CAS  Google Scholar 

  30. Koroleva, A., Gill, A.A., Ortega, I., Haycock, J.W., Schlie, S., Gittard, S.D., Chichkov, B.N. & Claeyssens, F. Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4, 025005 (2012).

    Article  CAS  Google Scholar 

  31. Shaw, L.A., Chizari, S., Shusteff, M., Naghsh-Nilchi, H., Di Carlo, D. & Hopkins, J.B. Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express 26, 13543–13548 (2018).

    Article  CAS  Google Scholar 

  32. Lölsberg, J., Cinar, A., Felder, D., Linz, G., Djeljadini, S. & Wessling, M. Two-photon vertical-flow lithography for microtube synthesis. Small 15, 1901356 (2019).

    Article  Google Scholar 

  33. Shanshool, H.M., Yahaya, M., Yunus, W.M.M. & Abdullah, I.Y. Polymer-ZnO nanocomposites foils and thin films for UV protection. AIP Conf. Proc. 1614, 136–141 (2014).

    Article  Google Scholar 

  34. Goh, E.G., Xu, X., McCormick, P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater. 78, 49–52 (2014).

    Article  Google Scholar 

  35. Kim, D.H. & Sung, A.Y. Physical properties and ophthalmic application of high functional materials with zinc oxide and titanium oxide nanoparticles. J. Nanosci. Nanotechnol. 16, 11035–11039 (2016).

    Article  CAS  Google Scholar 

  36. Mirzaei, H. & Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 43, 907–914 (2017).

    Article  CAS  Google Scholar 

  37. Nain, V., Kaur, M., Sandhu, K.S., Thory, R. & Sinhmar, A. Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. Int. J. Biol. Macromol. 162, 24–30 (2020).

    Article  CAS  Google Scholar 

  38. Shrestha, M. & Lau, G.-K. Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer. Opt. Lett. 41, 4433–4436 (2016).

    Article  CAS  Google Scholar 

  39. Olson, E., Li, Y., Lin, F.Y., Miller, A., Liu, F., Tsyrenova, A., Palm, D., Curtzwiler, G.W., Vorst, K. L., Cochran, E. & Jian, S. Thin biobased transparent UV-blocking coating enabled by nanoparticle self-assembly. ACS Appl. Mater. Interfaces 11, 24552–24559 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2017R1 A2B4005933, NRF-2018R1A6A1A03025708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook Park.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Park, W. Microsized 3D Hydrogel Printing System using Microfluidic Maskless Lithography and Single Axis Stepper Motor. BioChip J 14, 317–325 (2020). https://doi.org/10.1007/s13206-020-4310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4310-4

Keywords

Navigation