Skip to main content
Log in

Liquid-crystal-droplet-based Monitoring System for Water-soluble Inorganic Acidic Gases from the Atmosphere

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A liquid crystal (LC)-based pH sensor for real-time monitoring of variations in localized pH values near the LC droplets was developed, and its applicability for the detection of acidic gases was explored. It was found that 4-cyano-4′-pentylbiphenyl (5CB), when doped with hexanoic acid (HA), shows a bright-fan-shaped (planar orientation of LCs) to dark-cross (homeotropic orientation of LCs) optical response to a minimal change of the pH value (from 6.5 to 6.6). The fast and intensive pH-driven optical response can be explained mainly with the orientational transitions of 5CB, induced by the protonation and deprotonation of HA at the interface of aqueous/LC droplet. Because of its high pH sensitivity, the LC-based sensor was further exploited for monitoring the local pH changes, which were originated from concentration changes of acidic gases. The results suggested that at an industrial scale/production environment, the sensor shows excellent performance for long-term monitoring and sensing of acidic gases. This type of LC-based sensor may find to fulfill its applicability potential in the trace measurement of acidic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lebrero, R., Bouchy, L., Stuetz, R. & Muñoz, R. Odor assessment and management in wastewater treatment plants: a review. Crit. Rev. Environ. Sci. Technol. 41, 915–950 (2011).

    Article  Google Scholar 

  2. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A. & Mirodatos, C. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chem. Eng. J. 155, 553–566 (2009).

    Article  CAS  Google Scholar 

  3. Gorguner, M. & Akgun, M. Acute inhalation injury. Eurasian J. Med. 42, 28–35 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saeed, O., Boyer, N.L., Pamplin, J.C., Driscoll, I.R., DellaVolpe, J., Cannon, J. & Cancio, L.C. Inhalation injury and toxic industrial chemical exposure. Military Medicine 183, 130–132 (2018).

    Article  PubMed  Google Scholar 

  5. Pettilä, V., Takkunen, O. & Tukiainen, P. Zinc chloride smoke inhalation: a rare cause of severe acute respiratory distress syndrome. Intensive Care Med. 26, 215–217 (2000).

    Article  PubMed  Google Scholar 

  6. Terzi, E., Zarogoulidis, K., Kougioumtzi, I., Dryllis, G., Kioumis, I., Pitsiou, G., Machairiotis, N., Katsikogiannis, N., Lampaki, S., Papaiwannou, A., Tsiouda, T., Madesis, A., Karaiskos, T., Zaric, B., Branislav, P. & Zarogoulidis, P. Acute respiratory distress syndrome and pneumothorax. J. Thorac. Dis. 6, S435–S442 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Walter, R., Gottlieb, D.J. & O’Connor, G.T. Environmental and genetic risk factors and gene-environment interactions in the pathogenesis of chronic obstructive lung disease. Environ. Health Perspect. 108, 733–742 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Unverdorben, M., Parodi, G., Pistolesi, M. & Storey, R.F. Dyspnea related to reversibly-binding P2Y12 inhibitors: a review of the pathophysiology, clinical presentation and diagnostics. Int. J. Cardiol. 202, 167–173 (2016).

    Article  PubMed  Google Scholar 

  9. Koli, V., Dhodamani, A., More, K., Acquah, S.F.A., Panda, D.K., Pawar, S. & Delekar, S. A simple strategy for the anchoring of anatase titania on multi-walled carbon nanotubes for solar energy harvesting. Sol. Energy 149, 188–194 (2017).

    Article  CAS  Google Scholar 

  10. Hunge, Y.M., Mahadik, M.A., Bulakhe, R.N., Yadav, S.P., Shim, J.J., Moholkar, A.V. & Bhosale, C.H. Oxidative degradation of benzoic acid using spray deposited WO3/TiO2 thin films. J. Mater. Sci.: Mater. Electron. 28, 17976–17984 (2017).

    CAS  Google Scholar 

  11. Jagadale, S.B., Patil, V.L., Vanalakar, S.A., Patil, P.S. & Deshmukh, H.P. Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram. Interfaces 44, 3333–3340 (2018).

    Article  CAS  Google Scholar 

  12. Stevens, J.G., Bowen, L.H. & Whatley, K.M. Moessbauer spectroscopy. Anal. Chem. 60, 90R–106R (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Janata J. Chemical sensors. Anal. Chem. 64, 196R–219R (1992).

    Article  CAS  Google Scholar 

  14. Feng, J.-w., Liu, Y.-j., Wang, H.-x., Zhao, J.-x., Cai, Q.-H. & Wang, X.-Z. Gas adsorption on silicene: a theoretical study. Comput. Mater. Sci. 87, 218–226 (2014).

    Article  CAS  Google Scholar 

  15. Sadeghi, H., Bailey, S. & Lambert, C.J. Silicene-based DNA nucleobase sensing. Appl. Phys. Lett. 104, 103104 (2014).

    Article  CAS  Google Scholar 

  16. Chakraborty, S., Noonan, P.S., Monserud, J. & Schwartz, D.K. Structure-specific liquid crystal anchoring induced by the molecular combing of short oligonucleotides. ACS Appl. Mater. Interfaces 7, 26874–26879 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. An, Z. & Jang, C.-H. Simple and label-free liquid crystal-based optical sensor for highly sensitive and selective endotoxin detection by aptamer binding and separation. ChemistrySelect 4, 1416–1422 (2019).

    Article  CAS  Google Scholar 

  18. Zhou, L., Hu, Q., Kang, Q. & Yu, L. Construction of liquid crystal droplet-based sensing platform for sensitive detection of organophosphate pesticide. Talanta 190, 375–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. An, Z. & Jang, C.-H. Sensitive and selective method for detecting cysteine based on optical properties of liquid crystal. Sens. Actuators, B 269, 135–142 (2018).

    Article  CAS  Google Scholar 

  20. An, Z. & Jang, C.-H. Label-free optical detection of aflatoxin by using a liquid crystal-based immunosensor. Microchem. J. 142, 335–342 (2018).

    Article  CAS  Google Scholar 

  21. Tian, T., Hu, Q., Wang, Y., Gao, Y. & Yu, L. Effect of imidazolium-based surface-active ionic liquids on the orientation of liquid crystals at various fluid/ liquid crystal interfaces. Langmuir 32, 11745–11753 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y., Zhou, L., Kang, Q. & Yu, L. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 183, 223–227 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Tian, T., Hu, Q., Wang, Y., Gao, Y. & Yu, L. Reversible photoresponsive molecular alignment of liquid crystals at fluid interfaces with persistent stability. Chem. — Eur. J. 22, 6340–6344 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Chuang, C.-H., Lin, Y.-C., Chen, W.-L., Chen, Y.-H., Chen, Y.-X., Chen, C.-M., Shiu, H.W., Chang, L.-Y., Chen, C.-H. & Chen, C.-H. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin. Biosens. Bioelectron. 78, 213–220 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, Y., Lei, M., Liu, S.-X. & Zhao, Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators, B 261, 226–232 (2018).

    Article  CAS  Google Scholar 

  26. Oh, S.Y., Hong, S.Y., Jeong, Y.R., Yun, J., Park, H., Jin, S.W., Lee, G., Oh, J.H., Lee, H., Lee, S.-S. & Ha, J. S. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces 10, 13729–13740 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H., An, Z. & Jang, C.-H. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem. J. 141, 71–79 (2018).

    Article  CAS  Google Scholar 

  28. Zamora, M.L., Dominguez, J.M., Trujillo, R.M., Goy, C.B., Sánchez, M.A. & Madrid, R.E. Potentiometric textile-based pH sensor. Sens. Actuators, B 260, 601–608 (2018).

    Article  CAS  Google Scholar 

  29. Young, S.-J. & Tang, W.-L. Wireless zinc oxide based pH sensor system. J. Electrochem. Soc. 166, B3047–B3050 (2019).

    Article  CAS  Google Scholar 

  30. Wencel, D., Kaworek, A., Abel, T., Efremov, V., Bradford, A., Carthy, D., Coady, G., McMorrow, R.C.N. & McDonagh, C. Optical Sensor for Real-Time pH Monitoring in Human Tissue. Small 14, DOI: https://doi.org/10.1002/smll.201803627 (2018).

  31. Wang, X.-Y., Huang, D.-W., Niu, C.-G., Guo, L.-J., Cui, J.-J., Hu, L.-Y. & Zeng, G.-M. An internal reference fluorescent pH sensor with two pH-sensitive fluorophores carrier. Sens. Actuators, B 234, 593–601 (2016)

    Article  CAS  Google Scholar 

  32. Mani, G.K., Morohoshi, M., Yasoda, Y., Yokoyama, S., Kimura, H. & Tsuchiya, K. ZnO-based microfluidic pH sensor: a versatile approach for quick recognition of circulating tumor cells in blood. ACS Appl. Mater. Interfaces 9, 5193–5203 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Goh, G.L., Agarwala, S., Tan, Y.J. & Yeong, W.Y. A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sens. Actuators, B 260, 227–235 (2018).

    Article  CAS  Google Scholar 

  34. Zhang, X., Li, Z., Zhou, T., Zhou, Q., Zeng, Z., Xu, X. & Hu, Y. A quantum dot-spore nanocomposite pH sensor. Talanta 150, 184–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, S. & Jang, C.-H. Nematic liquid crystal micro-droplets on solid surfaces and their ordering transition in bulk aqueous solution. Liq. Cryst. 42, 1436–1443 (2015).

    Article  CAS  Google Scholar 

  36. Zhong, S. & Jang, C.-H. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces. Soft matter 11, 6999–7004 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. An, Z. & Jang, C.-H. Fabrication of Liquid Crystal Droplet Patterns for Monitoring Aldehyde Vapors. ChemPlusChem 84, DOI: https://doi.org/10.1002/cplu.201900470 (2019).

  38. Kim, H.J., Rim, J. & Jang, C.-H. Liquid-crystal-based immunosensor for diagnosis of tuberculosis in clinical specimens. ACS Appl. Mater. Interfaces 9, 21209–21215 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Brake, J.M., Mezera, A.D. & Abbott, N.L. Active control of the anchoring of 4’ -pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant. Langmuir 19, 8629–8637 (2003).

    Article  CAS  Google Scholar 

  40. An, Z. & Jang, C.-H. Nanoparticle-assisted optical sensor for clinical diagnosis of tuberculosis. Microchem. J. 147, 941–947 (2019).

    Article  CAS  Google Scholar 

  41. Khan, W., Choi, J.H., Kim, G.M. & Park, S.-Y. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP. Lab Chip 11, 3493–3498 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Brake, J.M., Daschner, M.K., Luk, Y.-Y. & Abbott, N.L. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. An, Z., Wei, Y. & Jang, C.-H. A new liquid crystal-based method to study disruption of phospholipid membranes by sodium deoxycholate. Liq. Cryst. 44, 427–435 (2017).

    CAS  Google Scholar 

  44. An, Z. & Jang, C.-H. Lipase functionalization of silica-coated biotemplated and nonbiotemplated magnetic nanoparticles. Bull. Korean Chem. Soc. 39, 1400–1405 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1003862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Jang.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Jang, CH. Liquid-crystal-droplet-based Monitoring System for Water-soluble Inorganic Acidic Gases from the Atmosphere. BioChip J 14, 258–267 (2020). https://doi.org/10.1007/s13206-020-4304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4304-2

Keywords

Navigation