Skip to main content
Log in

Recent Advances in 3D Bioprinted Tumor Microenvironment

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Tumors in vivo exist in a microenvironment, so-called tumor microenvironment (TME), which includes peripheral blood vessels, immune cells, fibroblasts, signalling molecules and extracellular matrix. In recent years, considerable efforts have been focused on developing bioprinting methods because 3D bioprinting can better recapitulate TMEs by accurately printing different types of TME cells in spatially localised regions. In this review, we first introduce TME and 3D bioprinting methods and later discuss bioprinted TMEs as tumor equivalents for understanding tumor biology as well as testing drug efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Dzobo, K., Motaung, K.S.C.M. & Adesida, A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. Int. J. Mol. Sci.20, 4628 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  2. Murphy, S.V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y.S., Duchamp, M., Oklu, R., Ellisen, L.W., Langer, R. & Khademhosseini, A. Bioprinting the cancer microenvironment. ACS Biomater. Sci. Eng.2, 1710–1721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knowlton, S., Onal, S., Yu, C.H., Zhao, J.J. & Tasoglu, S. Bioprinting for cancer research. Trends Biotechnol.33, 504–513 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Peela, N., Truong, D., Saini, H., Chu, H., Mashaghi, S., Ham, S.L., Singh, S., Tavana, H., Mosadegh, B. & Nikkhah, M. Advanced biomaterials and micro-engineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials133, 176–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Jabłońska-Trypuć, A., Matejczyk, M. & Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem.31, 177–183 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Cirri, P. & Chiarugi, P. Cancer associated fibro-blasts: the dark side of the coin. Am. J. Cancer Res.1, 482–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res.19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L. & Yin, R. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol.12, 86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katayama, Y., Uchino, J., Chihara, Y., Tamiya, N., Kaneko, Y., Yamada, T. & Takayama, K. Tumor neovascularization and developments in therapeutics. Cancers11, 316 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  11. Muz, B., de la Puente, P., Azab, F. & Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl)3, 83–92 (2015).

    Article  Google Scholar 

  12. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev.32, 1267–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu, Z., Fu, J., Lin, H. & He, Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J. Pharm. Sci. (2019). in press.

  14. Munaz, A., Vadivelu, R.K., John, J.S., Barton, M., Kamble, H. & Nguyen, N.-T. Three-dimensional printing of biological matters. J. Sci. Adv. Mater. Devices1, 1–17 (2016).

    Article  Google Scholar 

  15. Schiele, N.R., Corr, D.T., Huang, Y., Raof, N.A., Xie, Y. & Chrisey, D.B. Laser-based direct-write techniques for cell printing. Biofabrication2, 032001 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang, Z., Wang, B., Hui, D., Qiu, J. & Wang, S. 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos. B Eng.123, 279–291 (2017).

    Article  CAS  Google Scholar 

  17. Masaeli, E. & Marquette, C. Direct-write bioprinting approach to construct multilayer cellular tissues. Front. Bioeng. Biotechnol.7, 478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu, C., Zhang, M., Huang, Y., Ogale, A., Fu, J. & Markwald, R.R. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir30, 9130–9138 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Norotte, C., Marga, F.S., Niklason, L.E. & Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials30, 5910–5917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osidak, E.O., Karalkin, P.A., Osidak, M.S., Parfenov, V.A., Sivogrivov, D.E., Pereira, F.D.A.S., Gryadunova, A.A., Koudan, E.V., Khesuani, Y.D., Kasyanov, V.A., Belousov, S.I., Krasheninnikov, S.V., Grigoriev, T.E., Chvalun, S.N., Bulanova, E.A., Mironov, V.A. & Domogatsky, S.P. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J. Mater. Sci.: Mater. Med.30, 31 (2019).

    Google Scholar 

  21. Wang, X., Ao, Q., Tian, X., Fan, J., Tong, H., Hou, W. & Bai, S. Gelatin-based hydrogels for organ 3D bioprinting. Polymers9, 401 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  22. Xu, M., Wang, X., Yan, Y., Yao, R. & Ge, Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials31, 3868–3877 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Yi, H.-G., Jeong, Y.H., Kim, Y., Choi, Y.-J., Moon, H.E., Park, S.H., Kang, K.S., Bae, M., Jang, J., Youn, H., Paek, S.H. & Cho, D.-W. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng.3, 509–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N. & Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials73, 254–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Den Bulcke, A.I., Bogdanov, B., De Rooze, N., Schacht, E.H., Cornelissen, M. & Berghmans, H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules1, 31–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, M., Sun, X., Wang, Z., Guo, S., Yu, G. & Yang, H. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers10, 1290 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  27. Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S. & Sun, W. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication6, 035001 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Park, J.A., Yoon, S., Kwon, J., Now, H., Kim, Y.K., Kim, W.-J., Yoo, J.-Y. & Jung, S. Freeform micro-patterning of living cells into cell culture medium using direct inkjet printing. Sci. Rep.7, 14610 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mirani, B., Pagan, E., Shojaei, S., Duchscherer, J., Toyota, B.D., Ghavami, S. & Akbari, M. A 3D bio-printed hydrogel mesh loaded with all-trans retinoic acid for treatment of glioblastoma. Eur. J. Pharmacol.854, 201–212 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X., Dai, X., Zhang, X., Ma, C., Li, X., Xu, T. & Lan, Q. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J. Biomed. Mater. Res., Part A107, 383–391 (2019).

    Article  CAS  Google Scholar 

  31. Diao, J., Zhang, C., Zhang, D., Wang, X., Zhang, J., Ma, C., Deng, K., Jiang, T., Jia, W. & Xu, T. Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells. Biofabrication11, 025006 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Li, X., Dai, X., Zhang, X., Zhang, J., Xu, T. & Lan, Q. Bioprinting of glioma stem cells improves their endotheliogenic potential. Colloids Surf. B. Biointerfaces171, 629–637 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X., Li, X., Dai, X., Zhang, X., Zhang, J., Xu, T. & Lan, Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf. B. Biointerfaces171, 291–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, X., Ma, C., Lan, Q. & Xu, T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication8, 045005 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Lee, C., Abelseth, E., de la Vega, L. & Willerth, S.M. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Mater. Today Chem.12, 78–84 (2019).

    Article  CAS  Google Scholar 

  36. Mollica, P.A., Booth-Creech, E.N., Reid, J.A., Zamponi, M., Sullivan, S.M., Palmer, X.-L., Sachs, P.C. & Bruno, R.D. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater.95, 201–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duchamp, M., Liu, T., van Genderen, A.M., Kappings, V., Oklu, R., Ellisen, L.W. & Zhang, Y.S. Sacrificial bioprinting of a mammary ductal carcinoma model. Biotechnol. J.14, 1700703 (2019).

    Article  CAS  Google Scholar 

  38. Kingsley, D.M., Roberge, C.L., Rudkouskaya, A., Faulkner, D.E., Barroso, M., Intes, X. & Corr, D.T. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater.95, 357–370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X., Zhang, X., Dai, X., Wang, X., Li, X., Diao, J. & Xu, T. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech8, 501 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berg, J., Hiller, T., Kissner, M.S., Qazi, T.H., Duda, G.N., Hocke, A.C., Hippenstiel, S., Elomaa, L., Weinhart, M., Fahrenson, C. & Kurreck, J. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci. Rep.8, 13877 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hou, S., Tiriac, H., Sridharan, B.P., Scampavia, L., Madoux, F., Seldin, J., Souza, G.R., Watson, D., Tuveson, D. & Spicer, T.P. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov.23, 574–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hakobyan, D., Médina, C., Dusserre, N., Stachowicz, M.-L., Handschin, C., Fricain, J.-C., Guillermet-Guibert, J. & Oliveira, H. Laser-assisted 3D bio-printing of exocrine pancreas spheroid models for cancer initiation study. Biofabrication12, 035001 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, X., Yu, C., Wang, P., Xu, W., Wan, X., Lai, C.S.E., Liu, J., Koroleva-Maharajh, A. & Chen, S. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials185, 310–321 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, X., Liu, C., Zhao, X. & Wang, X. A 3D bio-printing liver tumor model for drug screening. World J. Pharm. Pharm. Sci.5, 196–213 (2016).

    CAS  Google Scholar 

  45. Schmidt, S.K., Schmid, R., Arkudas, A., Kengelbach-Weigand, A. & Bosserhoff, A.K. Tumor cells develop defined cellular phenotypes after 3D-bio-printing in different bioinks. Cells8, 1295 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  46. Mondal, A., Gebeyehu, A., Miranda, M., Bahadur, D., Patel, N., Ramakrishnan, S., Rishi, A.K. & Singh, M. Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci. Rep.9, 19914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hermida, M.A., Kumar, J.D., Schwarz, D., Laverty, K.G., Di Bartolo, A., Ardron, M., Bogomolnijs, M., Clavreul, A., Brennan, P.M., Wiegand, U.K., Melchels, F.P., Shu, W. & Leslie, N.R. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Adv. Biol. Regul.75, 100658 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Jiang, T., Munguia-Lopez, J.G., Flores-Torres, S., Grant, J., Vijayakumar, S., De Leon-Rodriguez, A. & Kinsella, J.M. Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels. Sci. Rep.7, 4575 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vinson, B.T., Phamduy, T.B., Shipman, J., Riggs, B., Strong, A.L., Sklare, S.C., Murfee, W.L., Burow, M.E., Bunnell, B.A. & Huang, Y. Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue. Biofabrication9, 025013 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., Glazer, R.I. & Zhang, L.G. 3D bio-printing a cell-laden bone matrix for breast cancer metastasis study. ACS Appl. Mater. Interfaces8, 30017–30026 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Meng, F., Meyer, C.M., Joung, D., Vallera, D.A., McAlpine, M.C. & Panoskaltsis-Mortari, A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv. Mater.31, 1806899 (2019).

    Article  CAS  Google Scholar 

  52. Xie, M., Gao, Q., Qiu, J., Fu, J., Chen, Z. & He, Y. 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system. Biomater. Sci.8, 109–117 (2020).

    Article  CAS  Google Scholar 

  53. Langer, E.M., Allen-Petersen, B.L., King, S.M., Kendsersky, N.D., Turnidge, M.A., Kuziel, G.M., Riggers, R., Samatham, R., Amery, T.S., Jacques, S.L., Sheppard, B.C., Korkola, J.E., Muschler, J.L., Thibault, G., Chang, Y.H., Gray, J.W., Presnell, S.C., Nguyen, D.G. & Sears, R.C. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep.26, 608–623 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T. & Demirci, U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J.6, 204–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Pel, D.M., Harada, K., Song, D., Naus, C.C. & Sin, W.C. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture. J. Cell Commun. Signal.12, 723–730 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reid, J.A., Palmer, X.-L., Mollica, P.A., Northam, N., Sachs, P.C. & Bruno, R.D. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci. Rep.9, 7466 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dai, X., Liu, L., Ouyang, J., Li, X., Zhang, X., Lan, Q. & Xu, T. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci. Rep.7, 1457 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Swaminathan, S., Hamid, Q., Sun, W. & Clyne, A.M. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication11, 025003 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Y., Shi, W., Kuss, M., Mirza, S., Qi, D., Krasnoslobodtsev, A., Zeng, J., Band, H., Band, V. & Duan, B. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater. Sci. Eng.4, 4401–4411 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Whiteside, T.L. The role of immune cells in the tumor microenvironment. Cancer Treat. Res. 103–124 (2006).

  61. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol.18, 275–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol.20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hu, W., Wang, G., Huang, D., Sui, M. & Xu, Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol.10, 1205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Braham, M.V.J., Ahlfeld, T., Akkineni, A.R., Minnema, M.C., Dhert, W.J.A., Öner, F.C., Robin, C., Lode, A., Gelinsky, M. & Alblas, J. Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma. Tissue Eng. Part C Methods24, 300–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Heinrich, M.A., Bansal, R., Lammers, T., Zhang, Y. S., Schiffelers, R.M. & Prakash, J. 3D-bioprinted minibrain: A glioblastoma model to study cellular interactions and therapeutics. Adv. Mater.31, 1806590 (2019).

    Article  CAS  Google Scholar 

  67. Han, S., Kim, S., Chen, Z., Shin, H.K., Lee, S.-Y., Moon, H.E., Paek, S.H. & Park, S. 3D bioprinted vascularized tumour for drug testing. Int. J. Mol. Sci.21, 2993 (2020).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was equally supported by the National Research Foundation (NRF) of Korea grants (2018R1A2B2002066, 2016M3A9B 4917320) and Institute of Information & Communications Technology Planning & Evaluation (IITP) (Grant no. 2019-0-00047) funded by the Ministry of Science and ICT (MSIT) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsu Park.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Han, S. & Park, S. Recent Advances in 3D Bioprinted Tumor Microenvironment. BioChip J 14, 137–147 (2020). https://doi.org/10.1007/s13206-020-4201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4201-8

Keywords

Navigation