Biologically Benign Multi-functional Mesoporous Silica Encapsulated Gold/Silver Nanorods for Anti-bacterial Applications by On-demand Release of Silver Ions

Abstract

Although silver (Ag)-based nanoparticles (NPs) are frequently used for bactericidal purposes, they have critical issues including excessive release of Ag+, severe oxidation, and cytotoxicity. In this study, we designed a multifunctional, on-demand antibacterial agent by successively encapsulating bimetallic gold/silver nanorods (Ag/AgNRs) with mesoporous silica (mSiO2) shells. Au/AuNRs were synthesized by coating Ag on AuNRs in a controlled manner, so that they exhibited a localized surface plasmon resonance peak in the near-infrared (NIR) region. When Au/AgNR@mSiO2 NPs were irradiated with an NIR laser under optimal conditions (0.4 W/cm2), they generated a small amount of heat (40–45 oC), which successively triggered the release of Ag+ and induced bacterial cell death. Here, mSiO2 shells play critical roles because they not only protect Ag from oxidation but also prevent the burst release of Ag+ and improve biocompatibility of the antibacterial agent against normal cells. We found that this multifunctional bacterial agent effectively kills gram-negative Escherichia coli and gram-positive Staphylococcus aureus without significantly increasing the temperature of the medium. Au/AgNR@mSiO2 NPs were also biologically benign with high biocompatibility against mammalian cells.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Unser, S., Bruzas, I., He, J. & Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors15, 15684–15716 (2015).

    Article  Google Scholar 

  2. 2.

    Ayala-orozco, C., Urban, C., Knight, M.W., Urban, A.S., Neumann, O., Bishnoi, S.W., Mukherjee, S., Goodman, A.M., Charron, H., Mitchell, T., Shea, M., Roy, R., Nanda, S., Schiff, R., Halas, N.J. & Joshi A. Au Nanomatryoshkas as Efficient Near-infrared Photothermal Transducers for Cancer Treatment?: Benchmarking against Nanoshells. ACS Nano6, 6372–6381 (2014).

    Article  Google Scholar 

  3. 3.

    Lin, L.S., Yang, X., Zhou, Z., Yang, Z., Jacobson, O., Liu, Y., Yang, A., Niu, G., Song, J., Yang, H.H & Chen, X. Yolk - Shell Nanostructure: An Ideal Architecture to Achieve Harmonious Integration of Magnetic - Plasmonic Hybrid Theranostic Platform. Adv. Mater.29, 1606681 (2017).

    Article  Google Scholar 

  4. 4.

    Javid, A., Kumar, M., Yoon, S., Lee, J.H. & Han, J.G. Size-Controlled Growth and Antibacterial Me chanism for Cu:C Nanocomposite Thin Films. Phys. Chem. Chem. Phys.19, 237–244 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Tan, L.H., Xing, H., Chen, H. & Lu, Y. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. J. Am. Chem. Soc.135, 17675–17678 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Chaudhuri, R.G. & Paria, S. Core / Shell Nanoparticles?: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev.112, 2373–2433 (2012).

    Article  Google Scholar 

  7. 7.

    Noh, J.Y., Kim, J.I., Chang, Y.W., Park, J.M., Song, H.W., Kang, M.J. & Pyun, J.C. Gold Nanoislands Chip for Laser Desorption/Ionization (LDI) Mass Spectrometry. BioChip J.11, 246–254 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Liang, H., Liu, B., Yuan, Q. & Liu, J. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. ACS Appl. Mater.8, 15615–15622 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Lee, J.W., Jung, H., Cho, H.H., Lee, J.H. & Nam, Y. Gold Nanostar-Mediated Neural Activity Control using Plasmonic Photothermal Effects. Biomaterials153, 59–69 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Kim, B.H., Yoon, I.S. & Lee, J.-S. Masking Nano-particle Surfaces for Sensitive and Selective Colorimetric Detection of Proteins. Anal. Chem.85, 10542–10548 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Willets, K.A. & Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem.58, 267–297 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Loo, C., Lin, A., Hirsch, L., Lee, M.-H., Barton, J., Halas, N., West, J. & Drezek, R. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technol. Cancer Res. Treat.3, 33–40 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Liang, X., Govindaraju, S. & Yun, K. Dual Applicability of Polyaniline Coated Gold Nanorods: a Study of Antibacterial and Redox Activity. BioChip J.12, 137–145 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Yoon, S., Lee, B., Yun, J., Han, J.G., Lee, J.S. & Lee, J.H. Systematic Study of Interdependent Relationship on Gold Nanorod Synthesis Assisted by Electron Microscopy Image Analysis. Nanoscale9, 7114–7123 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Park, C., Kong, M., Lee, J.-H., Ryu, S. & Park, S. Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-Binding Domain Conjugated Magnetic Nanoparticles. BioChip J.12, 287–293 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Ding, X., Yuan, P., Gao, N., Zhu, H., Yang, Y.Y. & Xu, Q.H. Au-Ag Core-Shell Nanoparticles for Simultaneous Bacterial Imaging and Synergistic Antibacterial Activity. Nanomed. Nanotechnol. Biol. Med.13, 297–305 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A. & Rai, M. Silver Nanoparticles?: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharm. Sci. 1931–1944 (2014).

    Google Scholar 

  18. 18.

    Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H. & Park, Y.H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus Aureus and Escherichia Coli. Appl. Environ. Microbiol.74, 2171–2178 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Black, K.C.L., Sileika, T.S., Yi, J., Zhang, R., Rivera, J.G. & Messersmith, P.B. Bacterial Killing by Light-Triggered Release of Silver from Biomimetic Metal Nanorods. Small10, 169–178 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Jiang, X., Wang, L., Ji, Y., Tang, J., Tian, X., Cao, M., Li, J., Bi, S., Wu, X., Chen, C. & Yin, J.-J. Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. Small13, 1602855 (2017).

    Article  Google Scholar 

  21. 21.

    Black, Burd, A., Kwok, C. H., Hung, S. C., Chan, H. S., Gu, H., Lam, W. K., Huang, L. A Comparative Study of the Cytotoxicity of Silver-Based Dressings in Monolayer Cell, Tissue Explant, and Animal Models. Wound Rep. Reg.15, 94–104 (2007).

    Article  Google Scholar 

  22. 22.

    Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X. & Chen, C. Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv. Mater.24, 1418–1423 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Yoon, S., Lee, B., Kim, C. & Lee, J.H. Controlled Heterogeneous Nucleation for Synthesis of Uniform Mesoporous Silica-Coated Gold Nanorods with Tailorable Rotational Diffusion and 1 nm-Scale Size Tunability. Cryst. Growth Des.18, 4731–4736 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Lee, J.-H., Kang, S., Ahn, M., Jang, H. & Min, D.H. Development of Dual-Pore Coexisting Branched Silica Nanoparticles for Efficient Gene-Chemo Cancer Therapy. Small14, 1702564 (2018).

    Article  Google Scholar 

  25. 25.

    Cheng, W., Liang, C., Xu, L., Liu, G., Gao, N., Tao, W., Luo, L., Zuo, Y., Wang, X., Zhang, X., Zeng, X. & Mei, L. TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy Against Multidrug Resistance. Small13, 1700623 (2017).

    Article  Google Scholar 

  26. 26.

    Kwon, D., Cha, B.G., Cho, Y., Min, J., Park, E.B., Kang, S.J. & Kim, J. Extra-Large Pore Mesoporous Silica Nanoparticles for Directing in Vivo M2 Macrophage Polarization by Delivering IL-4. Nano Lett.17, 2747–2756 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Song, T., Tang, L., Tan, L.H., Wang, X., Satyavolu, N.S.R., Xing, H., Wang, Z., Li, J., Liang, H. & Lu, Y. DNA-Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing From Gold Nanorod Seeds. Angew. Chem. Int. Ed.54, 8114–8118 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Kim, F., Song, J.H. & Yang, P. Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc.124, 14316–14317 (2002).

    CAS  Article  Google Scholar 

  29. 29.

    Heo, J.H., Yi, G.S., Lee, B.S., Cho, H.H., Lee, J.W. & Lee, J.H. A Significant Enhancement of Color Transition From an on - off Type Achromatic Colorimetric Nanosensor for Highly Sensitive Multi-Analte Detection with the Naked Eye. Nanoscale8, 18341–18351 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Liu, X., Wang, Q., Li, C., Zou, R., Li, B., Song, G., Xu, K., Zheng, Y. & Hu, J. Cu2-xSe@mSiO2-PEG Core-Shell Nanoparticles: A Low-Toxic and Efficient Difunctional Nanoplatform for Chemo-Photothermal Therapy under Near Infrared Light Radiation with a Safe Power Density. Nanoscale.6, 4361–4370 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) of Korea for a Bio-inspired Innovation Technology Development Project (NRF-2018M3C1B7021997) funded by the Ministry of Science and ICT and Basic Science Research Program funded by the Ministry of Education (NRF-2019R1A6A1A03033215). This work was also supported by Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1010031).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung Heon Lee.

Additional information

Conflict of Interests The authors declare no competing financial interests.

These authors contrilbuted equally.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Chung, Y., Lee, J.W. et al. Biologically Benign Multi-functional Mesoporous Silica Encapsulated Gold/Silver Nanorods for Anti-bacterial Applications by On-demand Release of Silver Ions. BioChip J 13, 362–369 (2019). https://doi.org/10.1007/s13206-019-3407-0

Download citation

Keywords

  • Gold/Silver nanorod
  • Mesoporous silica
  • Antibacterial agent
  • Drug delivery
  • Near-infrared (NIR)
  • Controlled silver release
  • Biocompatibility