Skip to main content
Log in

A Review of Electrical Impedance Characterization of Cells for Label-Free and Real-Time Assays

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The aim of this review is to discuss label-free and real-time assays characterizing the electrical impedance of cells for biomedical and pharmacological applications. Electrical impedance measurements can be used to non-destructively monitor cellular behavior by analyzing the electrical cell-substrate impedance, which is determined by cellular morphology and distribution on the sensing electrode. Cellular electrical impedance measurements can be used to analyze the effects of various therapeutic agents, nanoparticles, naturally derived bioactive compounds, chemotaxins, or other stimulants on cellular cytotoxicity, motility, migration, invasion, and proliferation. This method is becoming increasingly widespread, with applications ranging from basic studies of the cell cycle, cell signaling, chronic disease, and pathophysiological mechanisms to smart cell monitoring and high-throughput screening, which are required by the pharmacological industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Giaever, I. & Keese, C.R. Morphological biosensors for mammalian cells. Nature366, 591–592 (1993).

    CAS  PubMed  Google Scholar 

  2. Szulcek, R., Bogaard, H.J. & van Nieuw Amerongen, G.P. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J. Visualized Exp.85, 51300 (2014).

    Google Scholar 

  3. Cui, Y., An, Y., Jin, T., Zhang, F. & He, P. Realtime monitoring of skin wound healing on nanogrooves topography using electric cell-substrate impedance sensing (ECIS). Sens. Actuators, B250, 461–468 (2017).

    CAS  Google Scholar 

  4. Koo, Y. & Yun, Y. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS). Mater. Sci. Eng., C.69, 554–560 (2016).

    CAS  Google Scholar 

  5. Das, D., Shiladitya, K., Biswas, K., Dutta, P.K., Parekh, A., Mandal, M. & Das, S. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.92, 062702 (2015).

    Google Scholar 

  6. Kramer, A.H., Joos-Vandewalle, J., Edkins, A.L., Frost, C.L. & Prinsloo, E. Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system. Biochem. Biophys. Res. Commun.443, 1245–1250 (2014).

    CAS  PubMed  Google Scholar 

  7. Yang, J.M., Chen, S.W., Yang, J.H., Hsu C.C. & Wang, J.S. A quantitative cell modeling and wound-healing analysis based on the electric cell-substrate impedance sensing (ECIS) method. Comput. Biol. Med.69, 134–143 (2016).

    PubMed  Google Scholar 

  8. Nordberg, R.C., Zhang, J., Griffith, E.H., Frank, M.W., Starly, B. & Loboa, E.G. Electrical cell-substrate impedance spectroscopy can monitor age-grouped human adipose stem cell variability during osteogenic differentiation. Stem Cells Transl. Med.6, 502–511 (2017).

    CAS  PubMed  Google Scholar 

  9. Jalin, A.M.A., Rajasekaran, M., Prather, P.L., Kwon, J.S., Gajulapati, V., Choi, Y., Kim, C., Pahk K. Ju, C. & Kim, W.K. Non-selective cannabinoid receptor antagonists, hinokiresinols reduce infiltration of microglia/macrophages into ischemic brain lesions in rat via modulating 2-arachidonolyglycerol-induced migration and mitochondrial activity. PLoS One10, e0141600 (2015).

    PubMed  Google Scholar 

  10. Yan, X., Meng, Z., Ouyang, J., Qiao, Y., Li, J., Jia, M., Yuan, F. & Ostrikov, K. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries. J. Phys. D: Appl. Phys.51, 085401 (2018).

    Google Scholar 

  11. Liu, C.L., Tam, J.C., Sanders, A.J., Ko, C.H., Fung, K.P., Leung, P.C., Harding, K.G., Jiang, W.G. & Lau, C.B. Molecular angiogenic events of a two-herb wound healing formula involving MAPK and Akt signaling pathways in human vascular endothelial cells. Wound Repair Regen.21, 579–587 (2013).

    PubMed  Google Scholar 

  12. Heileman, K. Daoud, J. & Tabrizian, M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens. Bioelectron.49, 348–359 (2013).

    CAS  PubMed  Google Scholar 

  13. Daoud, J., Asami, K., Rosenberg, L. & Tabrizian, M. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds. Phys. Med. Biol.57, 5097 (2012).

    PubMed  Google Scholar 

  14. Havelka, D., Krivosudský, O., Průša, J. & Cifra, M. Rational design of sensor for broadband dielectric spectroscopy of biomolecules. Sens. Actuators B Chem.273, 62–69 (2018).

    CAS  Google Scholar 

  15. Park, I.H., Hong, Y., Jun, H.S., Cho, E.S. & Cho, S. DAQ based impedance measurement system for low cost and portable electrical cell-substrate impedance sensing. BioChip J.12, 18–24 (2018).

    CAS  Google Scholar 

  16. Pannekoek, W.J., van Dijk, J.J., Chan, O.Y., Huveneers, S., Linnemann, J.R., Spanjaard, E., Brouwer, P.M., van der Meer, A.J., Zwartkruis, F.J., Rehmann, H., de Rooij, J. & Bos, J.L. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cellular Signalling23, 2056–2064 (2011).

    CAS  PubMed  Google Scholar 

  17. Doerr, L., Thomas, U., Guinot, D., Bot, C., Stoelzle-Feix, S., Beckler, M., George, M. & Fertig, N. New easy-to-use hybrid system for extracellular potential and impedance recordings. Journal of Laboratory Automation20, 175–188 (2015).

    CAS  PubMed  Google Scholar 

  18. Jonsson, M., Wang, Q. & Becker, B. Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev. Technol.9, 589–599 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Peters, M., Scott, C., Ochalski, R. & Dragan, Y. Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Assay Drug Dev. Technol.10, 525–532 (2012).

    CAS  PubMed  Google Scholar 

  20. Mamidi, S.K., Klutcharch, K., Rao, S., Souza, J.C.M., Mercuri, L.G. & Mathew, M.T. Advancements in temporomandibular joint total joint replacements (TMJR). Biomed. Eng. Lett.9, 169–179 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Rossant, J. & Howard, L. Signaling pathway in vascular development. Annu. Rev. Cell Dev. Biol.18, 541–573 (2002).

    CAS  PubMed  Google Scholar 

  22. Friedl, P. & Weigelin, B. Interstitial leukocyte migration and immune function. Nat. Immunol.9, 960–969 (2008).

    CAS  PubMed  Google Scholar 

  23. Gupta, G.P. & Massague, J. Cancer metastasis: building a framework. Cell127, 679–695 (2006).

    CAS  Google Scholar 

  24. Newby, A.C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res.69, 614–624 (2006).

    CAS  PubMed  Google Scholar 

  25. Gamal, W., Borooah, S., Smith, S., Underwood, I., Srsen, V., Chandran, S., Bagnaninchi, P.O. & Dhillon, B. Real-time quantitative monitoring of hiPSC-based model of macular degeneration on electric cell-substrate impedance sensing microelectrodes. Biosens. Bioelectron.71, 445–455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, T.H., Lee, J.M., Ahrberg, C.D. & Chung, B.G. Development of the microfluidic device to regulate shear stress gradients. BioChip J.12, 294–303 (2018).

    CAS  Google Scholar 

  27. Tavakoli, J. & Khosroshahi, M.E. Surface morphology characterization of laser-induced titanium implants: lesson to enhance osseointegration process. Biomed. Eng. Lett.8, 249–257 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Fronza, M., Heinzmann, B., Hamburger, M., Laufer, S. & Merfort, I. Determination of the Wound Healing Effect of Calendula Extracts Using the Scratch Assay with 3T3 Fibroblasts. J. Ethnopharmacol.126, 463–467 (2009).

    CAS  PubMed  Google Scholar 

  29. Liang, C.-C., Park, A.Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc.2, 329–333 (2007).

    CAS  PubMed  Google Scholar 

  30. Riahi, R., Yang, Y., Zhang, D.D. & Wong, P.K. Advances in wound-healing assays for probing collective cell migration. Journal of Laboratory Automation17, 59–65 (2012).

    CAS  PubMed  Google Scholar 

  31. Noiri, E., Hu, Y., Bahou, W.F., Keese, C.R., Giaever, I. & Goligorsky, M.S. Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J. Biol. Chem.272, 1747–1752 (1997).

    CAS  PubMed  Google Scholar 

  32. Keese, C.R., Wegener, J., Walker, S.R. & Giaever, I. Electrical wound-healing assay for cells in vitro. Proc. Nail. Acad. Sci. USA.101, 1554–1559 (2004).

    CAS  Google Scholar 

  33. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J.B. The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovasc. Res.95, 194–204 (2012).

    CAS  PubMed  Google Scholar 

  34. Han, X.J., Chen, M. & Hong, T. Lentivirus-mediated RNAi knockdown of the gap junction protein, Cx43, attenuates the development of vascular restenosis following balloon injury. Int. J. Mol. Med.35, 885–892 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, P., Zheng, C. & Ye, H. MicroRNA-365 inhibits vascular smooth muscle cell proliferation through targeting cyclin D1. Int. J. Med. Sci.11, 765–770 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Louis, S.F. & Zahradka, P. Vascular smooth muscle cell motility: From migration to invasion. Exp. Clin. Cardiol.15, 75–85 (2010).

    Google Scholar 

  37. Chan, K.C., Lin, M.C., Huang, C.N., Chang, W.C. & Wang, C.J. Mulberry 1-deoxynojirimycin pleiotropically inhibits glucose-stimulated vascular smooth muscle cell migration by activation of AMPK/RhoB and down-regulation of FAK. J. Agric. Food Chem.61, 9867–9875 (2013).

    CAS  PubMed  Google Scholar 

  38. Iida, M., Tanabe, K., Matsushima-Nishiwaki, R., Kozawa, O. & Iida, H. Adenosine monophosphate-activated protein kinase regulates platelet-derived growth factor-BB-inducedvascular smooth muscle cell migration. Arch. Biochem. Biophys.530, 83–92 (2013).

    CAS  PubMed  Google Scholar 

  39. Stone, J.D., Narine, A., Shaver, P.R., Fox, J.C., Vuncannon, J.R. & Tulis, D.A. AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. Am. J. Physiol. Heart Circ. Physiol.304, H369–H381 (2013).

    CAS  PubMed  Google Scholar 

  40. Iqbal, S., Khan, M.U.G., Saba, T. & Rehman A. Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomed. Eng. Lett.8, 5–28 (2018).

    PubMed  Google Scholar 

  41. Hong, J., Kandasamy, K., Marimuthu, M., Choi, C.S. & Kim, S. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst136, 237–245 (2011).

    CAS  PubMed  Google Scholar 

  42. Wang, L., Wang, L., Yin, H., Xing, W., Yu, Z., Guo, M. & Cheng J. Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosensors and Bioelectronics25, 990–995 (2009).

    PubMed  Google Scholar 

  43. Ren, J., Xiao, Y.J., Singh, L.S., Zhao, X., Zhao, Z., Feng, L., Rose, T.M., Prestwich, G.D. & Xu, Y. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res.66, 3006–3014 (2006).

    CAS  PubMed  Google Scholar 

  44. Bian, D., Su, S., Mahanivong, C., Cheng, R.K., Han, Q., Pan, Z.K., Sun, P. & Huang S. Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res.64, 4209–4217 (2004).

    CAS  PubMed  Google Scholar 

  45. Xu, J., Lai, Y.J., Lin, W.C. & Lin, F.T. TRIP6 enhances lysophosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid 2 receptor. J. Biol. Chem.279, 10459–10468 (2004).

    CAS  PubMed  Google Scholar 

  46. Sodunke, T.R., Turner, K.K., Caldwell, S.A., McBride, K.W., Reginato, M.J. & Noh, H.M. Micropatterns of matrigel for three-dimensional epithelial cultures. Biomaterials28, 4006–4016 (2007).

    CAS  PubMed  Google Scholar 

  47. Bird, C. & Kirstein, S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat. Methods.6, 622 (2009).

    Google Scholar 

  48. Go, H., Tian, T. & Rhee, S.W. Fabrication of microfluidic chip for investigation of wound healing processes. BioChip J.12, 146–153 (2018).

    CAS  Google Scholar 

  49. Nguyen, T.A., Yin, T.I., Reyes, D. & Urban, G.A. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal.Chem.85, 11068–11076 (2013).

    CAS  PubMed  Google Scholar 

  50. Vashist, S.K., Zheng, D., Al-Rubeaan, K., Luong, J.H. & Sheu, F.S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances29, 169–188 (2011).

    CAS  PubMed  Google Scholar 

  51. Matthew, T., Amélie, B., Carina, J., Per-Olof, E., Ola, E., Jarrod, W. & Willem M. N.J. Utility of resazurin, horseradish peroxidase, and NMR assays to identify redox-related false-positive behavior in high-throughput screens. Assay Drug Dev. Technol.16, 3 (2018).

    Google Scholar 

  52. Fallarero, A., Batista-González, A.E., Hiltunen, A.K., Liimatainen, J., Karonen, M. & Vuorela, P.M. Online measurement of real-time cytotoxic responses induced by multi-component matrices, such as natural products, through electric cell-substrate impedance sensing (ECIS). Int. J. of Mol. Sci.16, 27044–27057 (2015).

    CAS  Google Scholar 

  53. Senthilkumar, K. & Kim, S. Marine invertebrate natural products for anti-inflammatory and chronic diseases. Evidence-Based Complementary and Alternative Medicine2013, 572859 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Kim, D., Mustoe, T. & Clark, R. Cutaneous wound healing in aging small mammals: a systematic review. Wound Repair and Regeneration23, 318–339 (2015).

    PubMed  Google Scholar 

  55. Park, I., Nguyen, T., Park, J., Yoo, A., Park, J. & Cho, S. Impedance characterization of chitosan cytotoxicity to MCF-7 breast cancer cells using a multidisc indium tin oxide microelectrode array. Journal of The Electrochemical Society165, B55–B59 (2018).

    CAS  Google Scholar 

  56. Tran, T.B., Cho, S. & Min, J. Hydrogel-based diffusion chip with electric cell-substrate impedance sensing integration for cell viability assay and drug toxicity screening. Biosensors and Bioelectronics50, 453–459 (2013).

    CAS  PubMed  Google Scholar 

  57. Saha, K., Agasti, S.S., Kim, C., Li, X. & Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev.112, 2739–2779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosman, C., Pierrat, S., Tarantola, M., Schneider, D., Sunnick, E., Janshoff, A. & Sönnichsen, C. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating. Beilstein J. Nanotechnol.5, 2479–2488 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Chen, C.-C.V., Ku, M.-C., Jayaseema, D.M., Lai, J.S., Hueng, D.-Y. & Chang, C. Simple SPION incubation as an efficient intracellular labeling method for tracking neural progenitor cells using MRI. PLoS ONE8, e56125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Astanina, K., Simon, Y., Cavelius, C., Petry, S., Kraegeloh, A. & Kiemer, A.K. Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomaterialia10, 4896–4911 (2014).

    CAS  PubMed  Google Scholar 

  61. Bang, D., Lee, T., Park, J., Lee, G., Hamm, S. & Park, J. Enhancement of capturing efficacy for circulating tumor cells by centrifugation. BioChip J.12, 38–45 (2018).

    CAS  Google Scholar 

  62. Do, L.Q., Thuy, H.T.T., Bui, T.T. Dau, V.T., Nguyen, N.-V., Duc, T.C. & Jen, C.-P. Dielectrophoresis microfluidic enrichment platform with built-in capacitive sensor for rare tumor cell detection. BioChip J.12, 114-(2018) 12: 114.

    CAS  Google Scholar 

  63. Nguyen, N.V., Yeh, J.H. & Jen, C.P. A handheld electronics module for dielectrophoretic impedance measurement of cancerous cells in the microchip. BioChip J.12, 208–215 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Gachon University (Grant number: 2019-0326) and the National Research Foundation of Korea (No. NRF-2019R1G1A1100610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungbo Cho.

Additional information

Conflict of Interests The authors declare no competing financial interests.

These authors contrilbuted equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoc Le, H.T., Kim, J., Park, J. et al. A Review of Electrical Impedance Characterization of Cells for Label-Free and Real-Time Assays. BioChip J 13, 295–305 (2019). https://doi.org/10.1007/s13206-019-3401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3401-6

Keywords

Navigation