Skip to main content

Paper-based Molecular Diagnostics for the Amplification and Detection of Pathogenic Bacteria from Human Whole Blood and Milk Without a Sample Preparation Step

Abstract

We have developed a novel paper-based molecular pathogen diagnostic method by combining the direct loop-mediated isothermal amplification (Direct LAMP) in a paper reactor and an immunochromatographic strip (ICS) detection without any DNA preparation step. The mineral paper is durable, oil- and tear-resistant, and waterproof, so it is a proper material for point-of-care (POC) testing owing to facile chip fabrication, cost-effectiveness, and disposability. The mineral paper was utilized as a substrate to construct the reactor for gene amplification based on the principle of origami without using an expensive and complicated process. In this novel paper reactor, we performed the Direct LAMP reaction, which is a direct isothermal DNA amplification without any sample preparation step such as cell lysis, DNA extraction and purification for amplifying specific target gene. After the Direct LAMP reaction in a paper reactor, a capillary tube was employed to take an appropriate amount (~ 2 μL) of amplicons in order to transfer the LAMP product to an ICS. The use of the ICS allowed us to perform the simple and rapid colorimetric detection of the resultant amplified target genes by naked eyes, thereby confirming the presence of the pathogen in a sample in a user-friendly way. In this platform, we could simultaneously identify Staphylococcus aureus and Escherichia coli O157:H7 contaminated in human blood or milk. The whole molecular diagnostic process (the Direct LAMP in a mineral paper plus the ICS detection) could be conducted in a paper substrate, so the proposed method would be ideal for pathogen detection in resourcelimited environments.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Table 1

References

  1. 1.

    Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. & Griffin, P.M. Foodborne illness acquired in the United States-Major pathogens. Emerging Infect. Dis. 17, 7–15 (2011).

    Article  Google Scholar 

  2. 2.

    Jung, J.H., Choi, S.J., Park, B.H., Choi, Y.K. & Seo, T.S. Ultrafast Rotary PCR system for multiple influenza viral RNA detection. Lab Chip 12, 1598–1600 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Niemz, A., Ferguson, T.M. & Boyle, D.S. Point-ofcare nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Wiedbrauk, D.L., Werner, J.C. & Drevon, A.M. Inhibition of PCR by aqueous and vitreous fluids. J. Clin. Microbiol. 33, 2643–2646 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    Oh, S.J., Park, B.H., Jung, J.H., Choi, G., Lee, D.C., Kim, D.H. & Seo, T.S. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab Chip 16, 1917–1926 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Oh, S.J., Park, B.H., Choi, G., Seo, J.H., Jung, J.H., Choi, J.S., Kim, D.H. & Seo, T.S. Centrifugal loopmediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron. 75, 293–300 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Lanciotti, R.S. & Kerst, A.J. Nucleic Acid Sequence- Based Amplification Assays for Rapid Detection of West Nile and St. Louis Encephalitis Viruses. J. Clin. Microbiol. 39, 4506–4513 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Lizardi, P.M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D.C. & Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Müller, C., Mark, D., Roth, G., Munday, P., Armes, N., Piepenburg, O., Zengerle, R. & von Stetten, F. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10, 887–893 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Vincent, M., Xu, Y. & Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 5, 795–800 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Notomi, T., Okayana, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. & Hase, T. Loop- mediated isothermal amplification of DNA. Nucleic Acids Res. 28, E63 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    Enomoto, Y., Yoshikawa, T., Ihira, M., Akimoto S., Miyake, F., Usui, C., Suga, S., Suzuki, K, Kawana, T., Nishiyama, Y. & Asano, Y. Rapid Diagnosis of Herpes Simplex Virus Infection by a Loop-Mediated Isothermal Amplification Method. J. Clin. Microbiol. 43, 951–955 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Connelly, J.T., Rolland, J.P. & Whitesides, G.M. “Paper Machine” for Molecular Diagnostics. Anal. Chem. 87, 7595–7601 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Choi, J.R., Hu, J., Tang, R., Gong, Y., Feng, S., Ren, H., Wen, T., Li, X.J., Abas, W.A.B.W., Murphy, B.P. & Xu, F. An integrated paper-based sample-toanswer biosensor for nucleic acid testing at the point of care. Lab Chip 16, 611–621 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Rodriguez, N.M., Wong, W.S., Liu, L., Dewar, R. & Klapperich, C.M. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16, 753–763 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Ezcurra, M. Terraskin® the paper made from stone: A study of a new writing support for forensic purposes. Forensic Sci. Int. 220, 164–172 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Gómez Álvarez-Arenas, T.E. & Soto, D.A. Characterization of mineral paper by air-coupled ultrasonic spectroscopy. Ultrasonics 52, 794–801 (2012).

    Article  Google Scholar 

  19. 19.

    Zhang, R., Gong, H.Q., Zeng, X., Lou, C. & Sze, C. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal. Chem. 85, 1484–1491 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Jung, J.H., Oh, S.J., Kim, Y.T., Kim, S.Y., Kim, W.J., Jung, J. & Seo, T.S. Combination of multiplex reverse-transcription loop-mediated isothermal amplification with an immunochromatographic strip for subtyping influenza A virus. Anal. Chim. Acta 853, 541–547 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Kim, Y.T., Jung, J.H., Choi, Y.K. & Seo, T.S. A packaged paper fluidic-based microdevice for detecting gene expression of influenza A virus. Biosens. Bioelectron. 61, 485–490 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Lee, D., Kim, Y.T., Lee, J.W., Kim, D.H. & Seo, T.S. An integrated direct loop-mediated isothermal immunochromatographic strip for bacteria detection in human whole blood and milk without a sample preparation step. Biosens. Bioelectron. 79, 273–279 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Kim, Y.T., Choi, J.Y., Chen, Y. & Seo, T.S. Integrated slidable and valveless polymerase chain reaction- capillary electrophoresis microdevice for pathogen detection. RSC Adv. 3, 8461–8467 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Nimesh, M., Joon, D., Varma-Basil, M. & Saluja, D. Development and clinical evaluation of sdaA loopmediated isothermal amplification assay for detection of Mycobacterium tuberculosis with an approach to prevent carryover contamination. J. Clin. Microbiol. 52, 2662–2664 (2014).

    Article  Google Scholar 

  25. 25.

    Hsieh, K., Mage, P.L., Csordas, A.T., Eisenstein, M. & Soh, H.T. Simultaneous elimination of carryover contamination and detection of DNA with uracil- DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem. Commun. (Cambridge, U. K.). 50, 3747–3749 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering Research Center of Excellence Program of Korea Ministry of Science, ICT & Future Planning (MSIP)/National Research Foundation of Korea (NRF) (2014R1A5A1009799) and the R&D Program of MSIT/COMPA(2019A000013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tae Seok Seo.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.W., Nguyen, V.D. & Seo, T.S. Paper-based Molecular Diagnostics for the Amplification and Detection of Pathogenic Bacteria from Human Whole Blood and Milk Without a Sample Preparation Step. BioChip J 13, 243–250 (2019). https://doi.org/10.1007/s13206-019-3310-8

Download citation

Keywords

  • Mineral paper
  • Direct loop-mediated isothermal amplification
  • Immunochromatographic strip
  • Bacteria detection
  • Colorimetric detection