Skip to main content
Log in

A Multichannel Electroosmotic Flow Pump Using Liquid Metal Electrodes

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Injecting a room-temperature liquid metal into microchannels offers a simple, rapid, and low-cost method of fabricating microfluidic electrodes. In this work, these electrodes are used to develop a multichannel electroosmotic flow pump for high-flow-rate microfluidic bio analysis applications. In this pump, two identical square-wave shaped liquid metal electrodes were located at both ends of pumping channels on the same horizontal level, and were separated by polydimethylsiloxane gaps from the pumping channels. To test the pumping performance, fluorescent particles were diluted with deionized water and injected into the pumping channels to measure the flow velocity. The results show that the pump with five parallel pumping channels can drive water at a speed of 4.63–45.76 μm/s with applied voltage of 300–1000 V, when the pumping channels are 30 μm high, and 250 μm long with 30-μm polydimethylsiloxane gaps. It can reach its highest possible flow rate of 325 nl/min when the applied voltage reaches its limit 3900V (150 μm long pumping channels, 150 μm long nonpumping channels and 30 μm PDMS gap with 10 parallel pumping channels). This EOF pump should be potential in many high-flow-rate microfluidic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Table 1.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Laser, D. J. & Santiago, J. G. A review of micropumps. J. Micromech. Microeng. 14, R35 (2004).

    Article  Google Scholar 

  2. Hwang, G., Haliyo, S. & Régnier, S. Infrared- photovoltaic properties of graphene revealed by electroosmotic spray direct patterning of electrodes. Micro Nano Lett. 5, 140–145 (2010).

    Article  CAS  Google Scholar 

  3. Sinton, D., Erickson, D. & Li, D. Photo-injection based sample design and electroosmotic transport in microchannels. J. Micromech. Microeng. 12, 898–904 (2002).

    Article  Google Scholar 

  4. Kamali, R., Radmehr, P. & Binesh, A. Molecular dynamics simulation of electro-osmotic flow in a nanonozzle. Micro Nano Lett. 7, 1049–1052 (2012).

    Article  Google Scholar 

  5. Berrouche, Y., Avenas, Y., Schaeffer, C., Chang, H.-C. & Wang, P. Design of a porous electroosmotic pump used in power electronic cooling. IEEE Trans. Ind. Appl. 45, 2073–2079 (2009).

    Article  Google Scholar 

  6. Chen, X., Zhang, L., Cai, H., Li, H., Sun, J. & Cui, D. Electrokinetic microchip-based sample loading for surface plasmon resonance detection. Micro Nano Lett. 8, 47–51 (2013).

    Article  CAS  Google Scholar 

  7. Erickson, D., Sinton, D. & Li, D. Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems. Lab Chip 3, 141–149 (2003).

    Article  CAS  Google Scholar 

  8. Glawdel, T. & Ren, C. L. Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips. Mech. Res. Commun. 36, 75–81 (2009).

    Article  Google Scholar 

  9. Glawdel, T., Elbuken, C., Lee, L. E. & Ren, C. L. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)—towards water toxicity testing. Lab Chip 9, 3243–3250 (2009).

    Article  CAS  Google Scholar 

  10. Gu, C., Jia, Z., Zhu, Z., He, C., Wang, W., Morgan, A., Lu, J.J. & Liu, S. Miniaturized Electroosmotic Pump Capable of Generating Pressures of More than 1200 Bar. Anal. Chem. 84, 9609–9614 (2012).

    Article  CAS  Google Scholar 

  11. Wang, W., Gu, C., Lynch, K.B., Lu, J.J., Zhang, Z., Pu, Q. & Liu, S. High-Pressure Open-Channel On-Chip Electroosmotic Pump for Nanoflow High Performance Liquid Chromatography. Anal. Chem. 86, 1958–1964 (2014).

    Article  CAS  Google Scholar 

  12. Shin, W., Zhu, E., Nagarale, R.K., Kim, C.H., Lee, J.M., Shin, S.J., & Heller, A. Nafion-Coating of the Electrodes Improves the Flow-Stability of the Ag/SiO2/Ag2O Electroosmotic Pump. Anal. Chem. 83, 5023–5025 (2011).

    Article  CAS  Google Scholar 

  13. Nagarale, R. K., Heller, A. & Shin, W. A Stable Ag/Ceramic-Membrane/Ag2O Electroosmotic Pump Built with a Mesoporous Phosphosilicate-on-Silica Frit Membrane. J. Electrochem. Soc. 159, P14–P17 (2012).

    Article  CAS  Google Scholar 

  14. Shin, W., Lee, J. M., Nagarale, R. K., Shin, S. J. & Heller, A. A Miniature, Nongassing Electroosmotic Pump Operating at 0.5 V. J. Am. Chem. Soc. 133, 2374–2377 (2011).

    Article  CAS  Google Scholar 

  15. Lakhotiya, H., Mondal, K., Nagarale, R. K. & Sharma, A. Low voltage non-gassing electro-osmotic pump with zeta potential tuned aluminosilicate frits and organic dye electrodes. RSC Adv. 4, 28814–28821 (2014).

    Article  CAS  Google Scholar 

  16. Kumar, R., Jahan, K., Nagarale, R. K. & Sharma, A. Nongassing Long-Lasting Electro-osmotic Pump with Polyaniline-wrapped Aminated Graphene Electrodes. ACS Appl. Mater. Interfaces 7, 593–601 (2015).

    Article  CAS  Google Scholar 

  17. Cheng, S. & Wu, Z. Microfluidic electronics. Lab Chip 12, 2782–2791 (2012).

    Article  CAS  Google Scholar 

  18. So, J.-H. & Dickey, M. D. Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11, 905–911 (2011).

    Article  CAS  Google Scholar 

  19. Gao, M., Gui, L. & Liu, J. Study of liquid-metal based heating method for temperature gradient focusing purpose. J. Heat Transfer 135, 091402 (2013).

    Article  Google Scholar 

  20. Fu, X., Mavrogiannis, N., Doria, S. & Gagnon, Z. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis. Lab Chip 15, 3600–3608 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 31427801), the Beijing Natural Science Foundation (L172055) and the Beijing Municipal Science & Technology Commission research fund (Z1711000004 17004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Gao.

Additional information

These authors contrilbuted equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Kang, K., Xie, F. et al. A Multichannel Electroosmotic Flow Pump Using Liquid Metal Electrodes. BioChip J 13, 217–225 (2019). https://doi.org/10.1007/s13206-019-3303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3303-7

Keywords

Navigation