Skip to main content
Log in

Development of Indirect-Competitive Optical Waveguide Lightmode Spectroscopy-based Immunosensor for Measuring Sulfamethazine

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Sulfamethazine (SMZ) belonging to sulfonamide antibiotics is an important surveillance target because of its widespread presence in food materials and processed foods. In this study, a new detection on SMZ was conducted with an indirect-competitive optical waveguide lightmode spectroscopy-based immunosensor. As sensing element, the anti-SMZ antibody had good reactivity and specificity to SMZ-BSA as coating antigen. The sensor signals during the whole course of reaction comprising immobilization of the coating antigen and competitive immune reaction were stable enough to acquire reproducible results. The concentrations of the coating antigen and antibody selected for the immunosensing were 2 and 0.03129 mg/mL, respectively. When determined with 10-12-10-2 M SMZ, the limit of detection of the present sensor was presumed to be 1 pM. The coefficient of variability for five repetitive measurements using the same sensor chip was 5.41%. These results seemed to indicate that the immunosensor has a good potential to be used as a high-sensitivity analytical tool for SMZ in food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saschenbrecher, P.W. & Fish, N.A. Sulphamethazine residues in uncooked edible tissues of pork following recommended oral administration and withdrawal. Can. J. Compar. Med. 44, 338–345 (1980).

    Google Scholar 

  2. Wen, Y., Zhang, M., Zhao, Q. & Feng, Y.Q. Monitoring of five sulfonamides antibacterial residues in milk by in-tube solid-phase microextraction coupled to highperformance liquid chromatography. J. Agr. Food Chem. 53, 8468–8473 (2005).

    Article  CAS  Google Scholar 

  3. Wang, L., Wang, S., Zhang, J., Liu, J. & Zhang, Y. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for sulphamethazine residues in edible animal foods: investigation of the effects of the analytical conditions and the sample matrix on assay performance. Anal. Bioanal. Chem. 390, 1619–1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Situ, C., Crooks, S.R.H., Baxter, A.G., Ferguson, J. & Elliott, C.T. On-line detection of sulfamethazine and sulfadiazine in porcine bile using a multi-channel high-throughput SPR biosensor. Anal. Chim. Acta 473, 143–149 (2002).

    Article  CAS  Google Scholar 

  5. Huertas-Pérez, J.F., Arroyo-Manzanares, N., Havlíková, L., Gámiz-Gracia, L., Solich, P. & García-Campaña, A.M. Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal. 124, 261–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Li, H. & Kijak, P.J. Development of a quantitative multiclass/multiresidue method for 21 veterinary drugs in shrimp. J. AOAC Int. 94, 394–406 (2011).

    CAS  PubMed  Google Scholar 

  7. Xu, W., Su, S., Jiang, P., Wang, H., Dong, X. & Zhang, M. Determination of sulfonamides in bovine milk with column-switching high performance liquid chromatography using imprinted silica with hydrophilic external layer as restricted access and selective extraction material. J. Chromatogr. A 1217, 7198–7207 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, L., Zuo, P. & Ye, B.C. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay. Anal. Biochem. 405, 89–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Jiménez, V., Adrian, J., Guiteras, J., Marco, M.P. & Companyó, R. Validation of an enzyme-linked immunosorbent assay for detecting sulfonamides in feed resources. J. Agr. Food Chem. 58, 7525–7531 (2010).

    Google Scholar 

  10. Reguera, C., Ortiz, M.C., Herrero, A. & Sarabia, L.A. Optimization of a FIA system with amperometric detection by means of a desirability function: determination of sulfadiazine, sulfamethazine and sulfamerazine in milk. Talanta 75, 274–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Rebe Raz, S., Bremer, M.G., Haasnoot, W. & Norde, W. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonancebased immunosensor. Anal. Chem. 81, 7743–7749 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Sternesjö, A., Mellgren, C. & Björck, L. Determination of sulfamethazine residues in milk by a surface plasmon resonance-based biosensor assay. Anal. Biochem. 226, 175–182 (1995).

    Article  PubMed  Google Scholar 

  13. Kim, N., Kim, D.-K., Cho, Y.-J., Moon, D.-K. & Kim, W.-Y. Carp vitellogenin detection by an optical waveguide lightmode spectroscopy biosensor. Biosens. Bioelectron. 24, 391–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Diamandis, E.P. & Christopoulos, T.K. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Anal. Chem. 62, 1149A–1157A (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Handl, H.L. & Gillies, R.J. Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci. 77, 361–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Park, I.-S. & Kim, N. Development of a chemiluminescent immunosensor for chloramphenicol. Anal. Chim. Acta 578, 19–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Oh, B.-K., Kim, Y.-K., Park, K.W., Lee, W.H. & Choi, J.-W. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron. 19, 1497–1504 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, N., Park, I.-S. & Kim, D.-K. Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sensor Actuat. B-Chem. 100, 432–438 (2004).

    Article  CAS  Google Scholar 

  19. Vörös, J. et al. Optical grating coupler biosensors. Biomaterials 23, 3699–3710 (2002).

    Article  PubMed  Google Scholar 

  20. Benesch, J., Askendl, A. & Tengvall, P. Quantification of adsorbed human serum albumin at solid interfaces: A comparison between radioimmunoassay (RIA) and simple null ellipsometry. Colloid Surface B-Biointer. 18, 71–81 (2000).

    Article  CAS  Google Scholar 

  21. Huetz, P. et al. Reactivities of antibodies on antigens adsorbed on solid surfaces. Proteins Interfaces II 602, 334–349 (1995).

    Article  CAS  Google Scholar 

  22. Homola, J., Yee, S.S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensor Actuat. B-Chem. 54, 3–15 (1999).

    Article  CAS  Google Scholar 

  23. Kim, N., Kim, D.-K. & Kim, W.-Y. Sulfamethazine detection with direct-binding optical waveguide lightmode spectroscopy-based immunosensor. Food Chem. 108, 768–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, M. et al. Chemiluminescence resonance energy transfer competitive immunoassay employing haptenfunctionalized quantum dots for the detection of sulfamethazine. ACS Appl. Mater. Inter. 8, 11745–11750 (2016).

    Google Scholar 

  25. Moon, D.-K., Kim, N. & Kim, W.-Y. Reactivity of the antibodies against purified carp vitellogenin and a synthetic vitellogenin peptide. J. Korean Soc. Appl. Biol. Chem. 49, 196–201 (2006).

    CAS  Google Scholar 

  26. Szalontai, H., Adányi, N. & Kiss, A. Comparative determination of two probiotics by QCM and OWLSbased immunosensors. New Biotechnol. 31, 395–401 (2014).

    Article  CAS  Google Scholar 

  27. Clerc, D. & Lukosz, W. Direct immunosensing with an integrated-optical output grating coupler. Sensor Actuat. B-Chem. 40, 53–58 (1997).

    Article  CAS  Google Scholar 

  28. Majer-Baranyi, K. et al. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples. Food Chem. 211, 972–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J., Jeon, M., Paeng, K.J. & Paeng, I.R. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal. Chim. Acta 619, 87–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, N., Park, I.-S. & Kim, W.-Y. Salmonella detection with a direct-binding optical grating coupler immunosensor. Sensor Actuat. B-Chem. 121, 606–615 (2007).

    Article  CAS  Google Scholar 

  31. Kim, N., Kim, D.-K. & Cho, Y.-J. Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein. Sensor Actuat. B-Chem. 143, 444–448 (2009).

    Article  CAS  Google Scholar 

  32. Hálamek, J., Makower, A., Skládal, P. & Scheller, F.W. Highly sensitive detection of cocaine using piezoelectric immunosensor. Biosens. Bioelectron. 17, 1045–1050 (2002).

    Article  PubMed  Google Scholar 

  33. Shitandi, A., Oketch, A. & Mahungum, S. Evaluation of a Bacillus stearothermophilus tube test as a screening tool for anticoccidial residues in poultry. J. Vet. Sci. 7, 177–180 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vallejo, R.P., Bogus, E.R. & Mumma, R.O. Effects of hapten structure and bridging groups on antisera specificity in parathion immunoassay development. J. Agr. Food Chem. 30, 572–580 (1982).

    Article  CAS  Google Scholar 

  35. Ryu, H.-S., Jang, Y.-I. & Kim, W.-Y. Immunoblotting reactivity of vitellogenin antibodies against native vitellogenins and a vitellogenin protein fragment produced in E. coli. J. Appl. Biol. Chem. 52, 170–173 (2009).

    Article  CAS  Google Scholar 

  36. Bovaird, J.H., Ngo, T.T. & Lenhoff, H.M. Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clin. Chem. 28, 2423–2426 (1982).

    CAS  PubMed  Google Scholar 

  37. Polzius, R., Schneider, Th., Bier, F.F., Bilitewski, U. & Koschinski, W. Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides. Biosens. Bioelectron. 11, 503–514 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N. Development of Indirect-Competitive Optical Waveguide Lightmode Spectroscopy-based Immunosensor for Measuring Sulfamethazine. BioChip J 12, 128–136 (2018). https://doi.org/10.1007/s13206-017-2205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-2205-9

Keywords

Navigation