Skip to main content
Log in

Dielectrophoresis Microfluidic Enrichment Platform with Built-In Capacitive Sensor for Rare Tumor Cell Detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The manipulation and detection of rare cells are important for many applications in early disease diagnosis and medicine. This study presents a dielectrophoresis (DEP) microfluidic enrichment platform combined with a built-in capacitive sensor for circulating tumor cell detection. The microchip is composed of a lollipop-shaped gold microelectrode structure under a polydimethylsiloxane chamber. A prototype of the device was fabricated using standard micromachining technology. With the proposed device, target cells (in this study, A549 non-small human lung carcinoma and S-180 sarcoma cell lines) are firstly guided toward the center of the working chamber via DEP forces. Then, the target cells are captured by an electrode immobilized by anti-EGFR, which has high affinity toward the target cells. After the cell concentration process, the differential capacitance is read to detect the presence of the target cells. Numerical simulations and measurement experiments were performed to demonstrate the high sensitivity of differential capacitive sensing. The obtained results show high sensitivity for S-180 cell detection (3 mV/cell). The proposed platform is suitable for rapid cancer diagnoses and other metabolic disease applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.C. et al. Rare cell isolation and analysis in microfluidics. Lab Chip 14, 626–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pantel, K., Brakenhoff, R.H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Mostert, B., Sleijfer, S., Foekens, J.A. & Gratama, J.W. Circulating tumor cells (CTCs): Detection methods and their clinical relevance in breast cancer. Cancer Treat. Rev. 35, 463–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Vona, G. et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 156, 57–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, S.H. et al. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (µFACS). Lab Chip 10, 1567–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacob, K., Sollier, C. & Jabado, N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics 4, 741–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hatanaka, H., Yasukawa, T. & Mizutani, F. Detection of surface antigens on living cells through incorporation of immunorecognition into the distinct positioning of cells with positive and negative dielectrophoresis. Anal. Chem. 83, 7207–7212 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jen, C.P. & Chen, T.W. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed. Microdevices 11, 597–607 (2009).

    Article  PubMed  Google Scholar 

  9. Te Huang, C. et al. Selectively concentrating cervical carcinoma cells from red blood cells utilizing dielectrophoresis with circular ITO electrodes in stepping electric fields. J. Med. Biol. Eng. 33, 51–58 (2013).

    Article  Google Scholar 

  10. Voldman, J. Electrical Forces for Microscale Cell Manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ramos, A., Morgan, H., Green, N.G. & Castellanos, A. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D. Appl. Phys. 31, 2338–2353 (1999).

    Article  Google Scholar 

  12. Jen, C.P., Chang, H.H., Te Huang, C. & Chen, K.H. A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsyst. Technol. 18, 1887–1896 (2012).

    Article  CAS  Google Scholar 

  13. Hassan, A.M. & El-Shenawee, M. Review of electromagnetic techniques for breast cancer detection. IEEE Rev. Biomed. Eng. 4, 103–118 (2011).

    Article  PubMed  Google Scholar 

  14. Coltro, W.K.T. et al. Capacitively coupled contactless conductivity detection on microfluidic systems -ten years of development. Anal. Methods 4, 25–33 (2012).

    Article  CAS  Google Scholar 

  15. Wu, J., Ben, Y. & Chang, H.C. Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid. Nanofluidics 1, 161–167 (2005).

    Article  Google Scholar 

  16. Suehiro, J., Yatsunami, R., Hamada, R. & Hara, M. Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. J. Phys. D. Appl. Phys. 32, 2814–2820 (1999).

    Article  CAS  Google Scholar 

  17. Huck, C. et al. Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate. Sensors Actuators, B Chem. 198, 102–109 (2014).

    Article  CAS  Google Scholar 

  18. Vu Quoc, T., Nguyen Dac, H., Pham Quoc, T., Nguyen Dinh, D. & Chu Duc, T. A printed circuit board capacitive sensor for air bubble inside fluidic flow detection. Microsyst. Technol. 21, 911–918 (2015).

    Article  CAS  Google Scholar 

  19. Valero, A., Braschler, T. & Renaud, P. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab Chip 10, 2216–2225 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Sun T. & Morgan, H. Single-cell microfluidic Impedance cytometry: A review. Microfluid. Nanofluidics 8, 423–443 (2010).

    Article  CAS  Google Scholar 

  21. Nguyen Dac, H., Vu Quoc, T., Do Quang, L., Nguyen Hoang, H. & Chu Duc, T. Differential C4D sensor for conductive and non-conductive fluidic channel. Microsyst. Technol. 22, 2511–2520 (2016).

    Article  Google Scholar 

  22. Hassan, U., Watkins, N.N., Reddy, B., Damhorst, G. & Bashir, R. Microfluidic differential immunocapture biochip for specific leukocyte counting. Nat. Protoc. 11, 714–726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G.H. et al. Isolating and concentrating rare cancerous cells in large sample volumes of blood by using dielectrophoresis and stepping electric fields. BioChip J. 8, 67–74 (2014).

    Article  CAS  Google Scholar 

  24. Elmy Johana, M.D. et al. Sensor Modeling For Portable Electrical Capacitance Tomography System Using Simulation by COMSOL Multiphysics. Int. J. Innov. Comput. Inf. Control. 8, 6999–7016 (2012).

    Google Scholar 

  25. Opekar, F., Tuma, P. & Štulík, K. Contactless impedance sensors and their application to flow measurements. Sensors (Switzerland) 13, 2786–2801 (2013).

    Article  CAS  Google Scholar 

  26. Tong, X., Yang, L., Lang, J.C., Zborowski, M. & Chalmers, J.J. Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytometry. B Clin. Cytom. 72, 310–323 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trinh Chu Duc or Chun-Ping Jen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, L.Q., Thuy, H.T.T., Bui, T.T. et al. Dielectrophoresis Microfluidic Enrichment Platform with Built-In Capacitive Sensor for Rare Tumor Cell Detection. BioChip J 12, 114–122 (2018). https://doi.org/10.1007/s13206-017-2204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-2204-x

Keywords

Navigation