Identification of Possibility of Glycyrrhiza uralensis as an Allergen by Protein Analysis

Abstract

Various secondary metabolites derived from plants are useful for humans to preserve their health. For this reason, medical herbs have been consumed universally without deep research about the dangerousness of these substance. However, they can produce unexpected adverse reactions in humans. Among these side effects, allergic reactions involving human immunoglobulin E can occur due to antimicrobial or antibacterial substances in plants. Glycyrrhiza uralensis has been prescribed for the treatment of numerous diseases given its multiple types of pharmaceutical efficacy, including its antimicrobial and antibacterial activities. Therefore, we researched whether Glycyrrhiza uralensis, which has antimicrobial ability, can cause allergic reaction in humans. To test the hypothesis devised here, we conducted proteomic level experiments. We utilized SDS-PAGE using a protein extract of Glycyrrhiza uralensis, with Coomassie blue staining to confirm the protein pattern and western blotting to identify Human IgE binding proteins in Glycyrrhiza uralensis. Among the many candidate sera, these methods detected three positive sera. Moreover, an identified protein section with reactivity associated with Human IgE was analyzed by LC-MS/ MS. Our experimental data provide a basis for testing the possibility of Glycyrrhiza uralensis as an allergen by identifying the reactivity between human Immunoglobulin E and proteins of Glycyrrhiza uralensis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sampedro, J. & Valdivia, E.R. New Antimicrobial Agents of Plant Origin. in Antimicrobial Compounds: Current Strategies and New Alternatives (eds. Villa, T.G. & Veiga-Crespo, P.) 83–114 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014).

    Chapter  Google Scholar 

  2. 2.

    Park, J. & Jang, H.-J. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol. Cell. Toxicol. 13, 1–20 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Jang, S.-A. et al. Gamma irradiation-induced liver injury and its amelioration by red ginseng extract. Mol. Cell. Toxicol. 13, 461–469 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Nilnumkhum, A., Punvittayagul, C., Chariyakornkul, A. & Wongpoomchai, R. Effects of hydrophilic compounds in purple rice husk on AFB1-induced mutagenesis. Mol. Cell. Toxicol. 13, 171–178 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 12, 564–582 (1999).

    CAS  Google Scholar 

  6. 6.

    Phannasorn, W., Khanaree, C., Wongnoppavich, A. & Chewonarin, T. The effect of purple rice (Oryza sativa L. indica) extract on the inflammatory response in a colon cancer cell line and dextran sulfate-induced tumor promotion in the rat colon. Mol. Cell. Toxicol. 13, 433–442 (2017).

    CAS  Google Scholar 

  7. 7.

    Middleton, E., Jr., Kandaswami, C. & Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. rev. 52, 673–751 (2000).

    CAS  Google Scholar 

  8. 8.

    Cunha, B.A. Antibiotic Side Effects. Med. Clin. North Am. 85, 149–185 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Kokoska, L., Polesny, Z., Rada, V., Nepovim, A. & Vanek, T. Screening of some Siberian medicinal plants for antimicrobial activity. J. Ethnopharmacol. 82, 51–53 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    Hoffmann-Sommergruber, K. Plant Allergens and Pathogenesis-Related Proteins. Int. arch. allergy immunol. 122, 155–166 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    Sampson, H.A. Food anaphylaxis. BMJ 56, 925–935 (2000).

    CAS  Google Scholar 

  12. 12.

    Asl, M.N. & Hosseinzadeh, H. Review of Pharmacological Effects of Glycyrrhiza sp. and its Bioactive Compounds. Phytother. Res. 22, 709–724 (2008).

    CAS  Google Scholar 

  13. 13.

    Gafner, S. et al. Isoflavonoids and Coumarins from Glycyrrhiza uralensis: Antibacterial Activity against Oral Pathogens and Conversion of Isoflavans into Isoflavan-Quinones during Purification. J. nat. prod. 74, 2514–2519 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Zhao, Z., Wang, W., Guo, H. & Zhou, D. Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behavioural Brain Research 194, 108–113 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Gruchalla, R.S. & Pirmohamed, M. Antibiotic Allergy. N. Engl. J. Med. 354, 601–609 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Kim, K.-H. et al. Isolated protein of Astragalus membranaceus acts as an allergen by binding human immunoglobulin E on human sera. BioChip J. 10, 95–102 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Kim, K.-H., Park, J.Y., Lee, I.-S., Kim, Y. & Jang, H.-J. Proteins derived from Prunus armeniaca kernel are possible to cause Immunoglobulin E reactivity in human sera. Mol. Cell. Toxicol. 13, 213–220 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Li, S., Geng, F., Wang, P., Lu, J. & Ma, M. Proteome analysis of the almond kernel (Prunus dulcis). J. sci. food agric. 96, 3351–3357 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Al-Ghouleh, A. et al. The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent. PLoS One 7, e33929 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Nierman, W.C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Bishop, J.G., Dean, A.M. & Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci U S A 97, 5322–5327 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    Yagami, T. [Plant defense-related proteins as latex allergens]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyujo hokoku=Bulletin of National Institute of Health Sciences, 46–62 (1998).

    Google Scholar 

  23. 23.

    Yagami, T., Sato, M., Nakamura, A. & Shono, M. One of the rubber latex allergens is a lysozyme. J. allergy clin. immunol. 96, 677–686 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    Proteau, P.J. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase: an overview. Bioorg. Chem. 32, 483–493 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Takahashi, S., Kuzuyama, T., Watanabe, H. & Seto, H. A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc. Natl. Acad. Sci. 95, 9879–9884 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Bailey, C.J. & Day, C. Traditional Plant Medicines as Treatments for Diabetes. Diabetes Care 12, 553–564 (1989).

    CAS  Article  Google Scholar 

  27. 27.

    van Vuurden, D.G. et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2, 984–996 (2011).

    Google Scholar 

  28. 28.

    Kim, K.-W. et al. Osteogenic differentiation of human mesenchymal stem cells promoted by the crude extracts of the mixture of Cortex mori radicis, Patrinia saniculaefolia. mol. Cell. Toxicol. 11, 475–482 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Lee, S.Y. et al. Heterogeneous expression of Chla mydia pneumoniae antigen candidates and high-level soluble expression of its inclusion membrane proteins in Escherichia coli. Mol. Cell. Toxicol. 13, 387–394 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Kang, H., Park, B.-R., Yoo, H.-S., Kwon, K.-R. & Kang, I.-C. Anti-angiogenic function of a Korean Ginseng and Toad venom complex, Doksamsumsu-dan (DSSSD) analyzed by a forwarded phase antibody microarray. BioChip J. 9, 222–231 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Bahk, Y.Y. et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4, 3299–3307 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. mass spectrom. 34, 105–116 (1999).

    CAS  Article  Google Scholar 

  33. 33.

    Byeon, J., Kang, K.H., Jung, H.-K. & Suh, J.-K. Assessment for quantification of biopharmaceutical protein using a microvolume spectrometer on microfluidic slides. BioChip J. 11, 21–29 (2017).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Daeho Kwon or Hyeung-Jin Jang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, EJ., Kim, KH., Lee, IS. et al. Identification of Possibility of Glycyrrhiza uralensis as an Allergen by Protein Analysis. BioChip J 12, 75–82 (2018). https://doi.org/10.1007/s13206-017-2110-2

Download citation

Keywords

  • IgE
  • Allergy-Q
  • herbal medicine
  • plant protein