Development of a Sol-gel-assisted Reverse-phase Microarray Platform for Simple and Rapid Detection of Prostate-specific Antigen from Serum


A sol-gel-based reverse-phase microarray was developed with improved sensitivity for prostatespecific antigen (PSA) from serum. The pore-sizecontrolled 3D sol-gel matrix was created with a large surface area to capture target molecules densely. Using the optically active sol-gel nanocomposites, human female serum was spiked with PSA and assessed using the reverse-phase protein microarray. The reverse-phase assay exhibited a limit of detection of 1 pg/mL for PSA and a dynamic range of 103 orders of magnitude. Notably, the platform matched the demand of the immunoassay in a simple and feasible manner. Moreover, the platform shortened the total assay time with an increased accuracy of diagnosis.

This is a preview of subscription content, log in to check access.


  1. 1.

    MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  2. 2.

    Hall, D.A., Ptacek, J. & Snyder, M. Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Sreekumar, A. et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 61, 7585–7593 (2001).

    CAS  Google Scholar 

  4. 4.

    Järås, K. et al. Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective. Anal. Chem. 79, 5817–5825 (2007).

    Article  Google Scholar 

  5. 5.

    Spurrier, B., Ramalingam, S. & Nishizuka, S. Reversephase protein lysate microarrays for cell signaling analysis. Nat. Protoc. 3, 1796–1808 (2008).

    Article  Google Scholar 

  6. 6.

    LaBaer, J. & Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 14–19 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncology 20, 1981–1989 (2001).

    CAS  Google Scholar 

  8. 8.

    Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics 4, 345–355 (2005).

    Article  Google Scholar 

  9. 9.

    Rupcich, N., Goldstein, A. & Brennan, J.D. Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem. Mat. 15, 1803–1811 (2003).

    Article  Google Scholar 

  10. 10.

    Lee, M.Y., Dordick, J.S. & Clark, D.S. Metabolizing enzyme toxicology assay chip (MetaChip) for highthroughput microscale toxicity analyses. Proc. Natl. Acad. Sci. U. S. A. 102, 983–987 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Lee, S. et al. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem. Biophys. Res. Commun. 358, 47–52 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Gill, I. Bio-doped nanocomposite polymers Sol-gel bio-encapsulates. Chem. Mat. 13, 3404–3421 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    Kim, S. et al. Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392–7396 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Ressine, A. et al. Macro/nano-structured silicon as solid support for antibody arrays. Anal. Chem. 75, 6968–6974 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Bensalah, K., Lotan, Y., Karam, J.A. & Shariat, S.F. New circulating biomarkers for prostate cancer. Prostate Cancer Prostatic Dis. 11, 112–120 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Smith, D.S., Humphrey, P.A. & Catalona, W.J. The early detection of prostate carcinoma with prostate specific antigen. Cancer 80, 1852–1856 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    Healy, D.A. et al. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 25, 125–131 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Ahyai, S.A. et al. Contemporary prostate cancer prevalence among T1c biopsy-referred men with a prostatespecific antigen level < or=4.0 ng per milliliter. Eur. Urol. 53, 750–757 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Morgentaler, A. & Rhoden, E.L. Prevalence of prostate cancer among hypogonadal men with prostate-specific antigen levels of 4.0 ng/mL or less. Urology 68, 1263–1267 (2006).

    Article  Google Scholar 

  20. 20.

    Thompson, I.M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Carter, H.B. et al. Percentage of free prostate-specific antigen in sera predicts aggressiveness of prostate cancer a decade before diagnosis. Urology 49, 379–384 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    Shchipunov, Y.A. Sol-gel-derived biomaterials of silica and carrageenans. J. Colloid Interface Sci. 268, 68–76 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Henry, N., Parce, J.W. & McConnell, H.M. Visualization of specific antibody and C1q binding to haptensensitized lipid vesicles. Proc. Natl. Acad. Sci. U. S. A. 75, 3933–3937 (1978).

    CAS  Article  Google Scholar 

  24. 24.

    Lilja, H. et al. Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin. Chem. 37, 1618–1625 (1991).

    CAS  Google Scholar 

  25. 25.

    Laurell, T., Wallman, L. & Nilsson, J. Design and development of a silicon micro-fabricated flow-through cell for on-line picolitre sample handling. J. Micromech. Microeng. 9, 369–376 (1999).

    Article  Google Scholar 

  26. 26.

    Pawlak, M. et al. Zeptosens’ protein microarrays: A novel high performance microarray platform for low abundance protein analysis with robust and simplicity. Proteomics 2, 283–393 (2002).

    Article  Google Scholar 

  27. 27.

    Wulfkuhle, J.D. et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reversephase protein microarrays. Proteomics 3, 2085–2090 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Nishizuka, S. et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl. Acad. Sci. U. S. A. 100, 14229–14234 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Finnskog, D.K. et al. High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis 27, 1093–1103 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Järås, K. et al. ENSM: Europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J. Proteome Res. 7, 1308–1314 (2008).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Ok Chan Jeong or Soyoun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Laurell, T., Jeong, O.C. et al. Development of a Sol-gel-assisted Reverse-phase Microarray Platform for Simple and Rapid Detection of Prostate-specific Antigen from Serum. BioChip J 12, 69–74 (2018).

Download citation


  • Sol-gel microarray
  • Macro/nano-structure silicon
  • Reverse-phase assay
  • Prostate-specific antigen
  • Prostate cancer