Advertisement

BioChip Journal

, Volume 12, Issue 1, pp 69–74 | Cite as

Development of a Sol-gel-assisted Reverse-phase Microarray Platform for Simple and Rapid Detection of Prostate-specific Antigen from Serum

  • SangWook Lee
  • Thomas Laurell
  • Ok Chan JeongEmail author
  • Soyoun KimEmail author
Original Article
  • 45 Downloads

Abstract

A sol-gel-based reverse-phase microarray was developed with improved sensitivity for prostatespecific antigen (PSA) from serum. The pore-sizecontrolled 3D sol-gel matrix was created with a large surface area to capture target molecules densely. Using the optically active sol-gel nanocomposites, human female serum was spiked with PSA and assessed using the reverse-phase protein microarray. The reverse-phase assay exhibited a limit of detection of 1 pg/mL for PSA and a dynamic range of 103 orders of magnitude. Notably, the platform matched the demand of the immunoassay in a simple and feasible manner. Moreover, the platform shortened the total assay time with an increased accuracy of diagnosis.

Keywords

Sol-gel microarray Macro/nano-structure silicon Reverse-phase assay Prostate-specific antigen Prostate cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).Google Scholar
  2. 2.
    Hall, D.A., Ptacek, J. & Snyder, M. Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007).CrossRefGoogle Scholar
  3. 3.
    Sreekumar, A. et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 61, 7585–7593 (2001).Google Scholar
  4. 4.
    Järås, K. et al. Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective. Anal. Chem. 79, 5817–5825 (2007).CrossRefGoogle Scholar
  5. 5.
    Spurrier, B., Ramalingam, S. & Nishizuka, S. Reversephase protein lysate microarrays for cell signaling analysis. Nat. Protoc. 3, 1796–1808 (2008).CrossRefGoogle Scholar
  6. 6.
    LaBaer, J. & Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 14–19 (2005).CrossRefGoogle Scholar
  7. 7.
    Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncology 20, 1981–1989 (2001).Google Scholar
  8. 8.
    Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics 4, 345–355 (2005).CrossRefGoogle Scholar
  9. 9.
    Rupcich, N., Goldstein, A. & Brennan, J.D. Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem. Mat. 15, 1803–1811 (2003).CrossRefGoogle Scholar
  10. 10.
    Lee, M.Y., Dordick, J.S. & Clark, D.S. Metabolizing enzyme toxicology assay chip (MetaChip) for highthroughput microscale toxicity analyses. Proc. Natl. Acad. Sci. U. S. A. 102, 983–987 (2005).CrossRefGoogle Scholar
  11. 11.
    Lee, S. et al. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem. Biophys. Res. Commun. 358, 47–52 (2007).CrossRefGoogle Scholar
  12. 12.
    Gill, I. Bio-doped nanocomposite polymers Sol-gel bio-encapsulates. Chem. Mat. 13, 3404–3421 (2001).CrossRefGoogle Scholar
  13. 13.
    Kim, S. et al. Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392–7396 (2006).CrossRefGoogle Scholar
  14. 14.
    Ressine, A. et al. Macro/nano-structured silicon as solid support for antibody arrays. Anal. Chem. 75, 6968–6974 (2003).CrossRefGoogle Scholar
  15. 15.
    Bensalah, K., Lotan, Y., Karam, J.A. & Shariat, S.F. New circulating biomarkers for prostate cancer. Prostate Cancer Prostatic Dis. 11, 112–120 (2008).CrossRefGoogle Scholar
  16. 16.
    Smith, D.S., Humphrey, P.A. & Catalona, W.J. The early detection of prostate carcinoma with prostate specific antigen. Cancer 80, 1852–1856 (1997).CrossRefGoogle Scholar
  17. 17.
    Healy, D.A. et al. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 25, 125–131 (2007).CrossRefGoogle Scholar
  18. 18.
    Ahyai, S.A. et al. Contemporary prostate cancer prevalence among T1c biopsy-referred men with a prostatespecific antigen level < or=4.0 ng per milliliter. Eur. Urol. 53, 750–757 (2008).CrossRefGoogle Scholar
  19. 19.
    Morgentaler, A. & Rhoden, E.L. Prevalence of prostate cancer among hypogonadal men with prostate-specific antigen levels of 4.0 ng/mL or less. Urology 68, 1263–1267 (2006).CrossRefGoogle Scholar
  20. 20.
    Thompson, I.M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).CrossRefGoogle Scholar
  21. 21.
    Carter, H.B. et al. Percentage of free prostate-specific antigen in sera predicts aggressiveness of prostate cancer a decade before diagnosis. Urology 49, 379–384 (1997).CrossRefGoogle Scholar
  22. 22.
    Shchipunov, Y.A. Sol-gel-derived biomaterials of silica and carrageenans. J. Colloid Interface Sci. 268, 68–76 (2003).CrossRefGoogle Scholar
  23. 23.
    Henry, N., Parce, J.W. & McConnell, H.M. Visualization of specific antibody and C1q binding to haptensensitized lipid vesicles. Proc. Natl. Acad. Sci. U. S. A. 75, 3933–3937 (1978).CrossRefGoogle Scholar
  24. 24.
    Lilja, H. et al. Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin. Chem. 37, 1618–1625 (1991).Google Scholar
  25. 25.
    Laurell, T., Wallman, L. & Nilsson, J. Design and development of a silicon micro-fabricated flow-through cell for on-line picolitre sample handling. J. Micromech. Microeng. 9, 369–376 (1999).CrossRefGoogle Scholar
  26. 26.
    Pawlak, M. et al. Zeptosens’ protein microarrays: A novel high performance microarray platform for low abundance protein analysis with robust and simplicity. Proteomics 2, 283–393 (2002).CrossRefGoogle Scholar
  27. 27.
    Wulfkuhle, J.D. et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reversephase protein microarrays. Proteomics 3, 2085–2090 (2003).CrossRefGoogle Scholar
  28. 28.
    Nishizuka, S. et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl. Acad. Sci. U. S. A. 100, 14229–14234 (2003).CrossRefGoogle Scholar
  29. 29.
    Finnskog, D.K. et al. High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis 27, 1093–1103 (2006).CrossRefGoogle Scholar
  30. 30.
    Järås, K. et al. ENSM: Europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J. Proteome Res. 7, 1308–1314 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryThe University of TokyoTokyoJapan
  2. 2.Department of Biomedical EngineeringLund UniversityLundSweden
  3. 3.Institute of Digital Anti-Aging HealthcareInje UniversityGimheaRepublic of Korea
  4. 4.Department of Biomedical EngineeringInje UniversityGimheaRepublic of Korea
  5. 5.Department of Biomedical EngineeringDongguk UniversitySeoulRepublic of Korea

Personalised recommendations