Enhancement of Capturing Efficacy for Circulating Tumor Cells by Centrifugation


Circulating tumor cells (CTCs), which are thought to be the main candidate for metastasis, are gaining importance owing to their potential impact on human health and public welfare. For capturing CTCs, antigen-antibody interaction has been used in which specific antigens expressed on cell surface of CTCs can be bound to antibodies immobilized on substrates. Conventional detection methods for CTCs have often suffered not only from relatively low antigen-antibody coupling efficiency but also from cumbersome fabrication processes of micro/nano-structures for CTCs capture. Herein, we report a facile, robust antibody-based CTCs detection technique using centrifugal force, which can enhance the capturing efficacy of CTCs. We validate chemical functionalization process of antibodies on a silica substrate by using atomic force microscopy. Furthermore, it turned out that the centrifugal force from a benchtop centrifuge is enough to produce a ~2.3-fold increase in capture yield of CTCs through enhancement of binding avidity between CTCs and the antibodies. Our result points out the great potential of our method for practical application in CTCs diagnostics and opens a new avenue for biological and chemical sensing.

This is a preview of subscription content, access via your institution.


  1. 1.

    Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Allard, W.J. et al. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  Google Scholar 

  3. 3.

    Zieglschmid, V., Hollmann, C. & Bocher, O. Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 42, 155–196 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Racila, E. et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 95, 4589–4594 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    Krivacic, R.T. et al. A rare-cell detector for cancer. Proc. Natl. Acad. Sci. U. S. A. 101, 10501–10504 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Kwon, T. et al. Carbon Nanotube-Patterned Surface-Based Recognition of Carcinoembryonic Antigens in Tumor Cells for Cancer Diagnosis. J. Phys. Chem. Lett. 4, 1126–1130 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Vardakis, N. et al. Prognostic Significance of the Detection of Peripheral Blood CEACAM5mRNA-Positive Cells by Real-Time Polymerase Chain Reaction in Operable Colorectal Cancer. Clin. Cancer Res. 17, 165–173 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Miller, M.C., Doyle, G.V. & Terstappen, L.W.M.M. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J. Oncol. 2010, 2010 (2010).

    Article  Google Scholar 

  9. 9.

    Aggarwal, C. et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann. Oncol. 24, 420–428 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Hou, S. et al. Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nano structures. Adv. Mater. 25, 1547–1551 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Hyun, K.A. & Jung, H.I. Microfluidic devices for the isolation of circulating rare cells: A focus on affinitybased, dielectrophoresis, and hydrophoresis. Electrophoresis 34, 1028–1041 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Hyun, K.A. & Jung, H.I. Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip 14, 45–56 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Chiu, W.J. et al. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/ Ionization for the Detection of Circulating Tumor Cells. Acs Appl. Mater. Inter. 7, 8622–8630 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Gu, Y.J. et al. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens. Bioelectron. 66, 24–31 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Wang, C. et al. Simultaneous isolation and detection of circulating tumor cells with a microfluidic siliconnanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 54, 55–62 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Arlett, J.L., Myers, E.B. & Roukes, M.L. Comparative advantages of mechanical biosensors. Nat. Nano. 6, 203–215 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Roberts, M.A. & Kelley, S.O. Ultrasensitive Detection of Enzymatic Activity with Nanowire Electrodes. J. Am. Chem. Soc. 129, 11356–11357 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Busse, S., Scheumann, V., Menges, B. & Mittler, S. Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17, 704–710 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    Hou, H.W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013).

    Article  Google Scholar 

  20. 20.

    Waggoner, P.S. & Craighead, H.G. Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238–1255 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Wang, S. et al. Three-Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angew. Chem.-Int. Edit. 48, 8970–8973 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Stern, E. et al. Label-free biomarker detection from whole blood. Nat. Nano. 5, 138–142 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, S.T. et al. Three-Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angew. Chem. Int. Edit. 48, 8970–8973 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Kuespert, K., Pils, S. & Hauck, C.R. CEACAMs: their role in physiology and pathophysiology. Curr. Opin. Cell Biol. 18, 565–571 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Hanley, W.D., Burdick, M.M., Konstantopoulos, K. & Sackstein, R. CD44 on LS174T Colon Carcinoma Cells Possesses E-Selectin Ligand Activity. Cancer Res. 65, 5812–5817 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Yang, J. et al. In Situ Detection of Live Cancer Cells by Using Bioprobes Based on Au Nanoparticles. Langmuir 24, 12112–12115 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Park, J., Choi, W., Jang, K. & Na, S. High-sensitivity detection of silver ions using oligonucleotide-immobilized oscillator. Biosens. Bioelectron. 41, 471–476 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Ido, S. et al. Immunoactive two-dimensional selfassembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 13, 264–270 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Nicoletti, I. et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immund. Methods. 139, 271–279 (1991).

    CAS  Article  Google Scholar 

  30. 30.

    Martin, S.J., Bradley, J.G. & Cotter, T.G. HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clin. Exp. Immunol. 79, 448–453 (2008).

    Article  Google Scholar 

  31. 31.

    Zangle, T.A. & Teitell, M.A. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat. Methods. 11, 1221–1228 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Seungjoo Haam or Jinsung Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bang, D., Lee, T., Park, J. et al. Enhancement of Capturing Efficacy for Circulating Tumor Cells by Centrifugation. BioChip J 12, 38–45 (2018). https://doi.org/10.1007/s13206-017-2105-z

Download citation


  • Circulating tumor cell
  • Centrifugation
  • Antigen-antibody interaction
  • Capturing efficacy
  • Atomic force microscope